A model for the pioneer anomaly

2009 ◽  
Vol 87 (10) ◽  
pp. 1089-1093 ◽  
Author(s):  
Ivan G. Avramidi ◽  
Guglielmo Fucci

In a previous work, we showed that massive test particles exhibit a nongeodesic acceleration in a modified theory of gravity obtained by a noncommutative deformation of General Relativity (so-called Matrix Gravity). We propose that this nongeodesic acceleration might be the origin of the anomalous acceleration experienced by the Pioneer 10 and Pioneer 11 spacecrafts.


Author(s):  
Mir Hameeda ◽  
Behnam Pourhassan ◽  
Mir Faizal ◽  
C. P. Masroor ◽  
Rizwan Ul Haq Ansari ◽  
...  

Abstract In this paper, we analyze the clustering of galaxies using a modified theory of gravity, in which the field content of general relativity has been be increased. This increasing in the field content of general relativity changes the large distance behavior of the theory, and in weak field approximation, it will also modify the large distance behavior of Newtonian potential. So, we will analyzing the clustering of multi-component system of galaxies interacting through this modified Newtonian potential. We will obtain the partition function for this multi-component system, and study the thermodynamics of this system. So, we will analyze the effects of the large distance modification to the Newtonian potential on Helmholtz free energy, internal energy, entropy, pressure and chemical potential of this system. We obtain also the modified distribution function and the modified clustering parameter for this system, and hence observe the effect of large distance modification of Newtonian potential on clustering of galaxies.



2005 ◽  
Vol 20 (11) ◽  
pp. 2304-2308 ◽  
Author(s):  
J. P. MBELEK

Results from an almost twenty years study of radiometric data from Pioneer 10/11, Galileo and Ulysses spacecraft indicate an anomalous time depending blueshift1, 2 which bares hardly prosaic explanations. Local manifestation of the expansion of the universe or new force terms are not favored either by the observational data. So, we explore the possibility that the reported anomaly, referred to as the "Pioneer anomaly", does not result from a real change in velocity. It turns out that the main Pioneer anomaly may be looked at as a new validation of general relativity (GR) in the weak field and low velocity limit on account of the "machian" behavior of quintessence like dark energy.



2008 ◽  
Vol 23 (02) ◽  
pp. 109-114 ◽  
Author(s):  
CHRISTIAN CORDA

In the general picture of high order theories of gravity, recently, the R-1 theory has been analyzed in two different frameworks. In this letter a third context is added, considering an explicit coupling between the R-1 function of the Ricci scalar and the matter Lagrangian. The result is a non-geodesic motion of test particles which, in principle, could be connected with Dark Matter and Pioneer anomaly problems.





Galaxies ◽  
2018 ◽  
Vol 6 (2) ◽  
pp. 43 ◽  
Author(s):  
John Moffat ◽  
Sohrab Rahvar ◽  
Viktor Toth

We investigate gravitational lensing in the context of the MOG modified theory of gravity. Using a formulation of the theory with no adjustable or fitted parameters, we present the MOG equations of motion for slow, nonrelativistic test particles and for ultrarelativistic test particles, such as rays of light. We demonstrate how the MOG prediction for the bending of light can be applied to astronomical observations. Our investigation first focuses on a small set of strong lensing observations where the properties of the lensing objects are found to be consistent with the predictions of the theory. We also present an analysis of the colliding clusters 1E0657-558 (known also as the Bullet Cluster) and Abell 520; in both cases, the predictions of the MOG theory are in good agreement with observation.



Universe ◽  
2017 ◽  
Vol 3 (2) ◽  
pp. 36 ◽  
Author(s):  
Mariam Bouhmadi-López ◽  
Imanol Albarran ◽  
Che-Yu Chen


2006 ◽  
Vol 15 (01) ◽  
pp. 1-55 ◽  
Author(s):  
SLAVA G. TURYSHEV ◽  
VIKTOR T. TOTH ◽  
LARRY R. KELLOGG ◽  
EUNICE L. LAU ◽  
KYONG J. LEE

The Pioneer 10/11 spacecraft yielded the most precise navigation in deep space to date. However, their radiometric tracking data has consistently indicated the presence of a small, anomalous, Doppler frequency drift. The drift is a blue shift, uniformly changing with a rate of ~6 × 10-9 Hz/s and can be interpreted as a constant sunward acceleration of each particular spacecraft of aP = (8.74±1.33) × 10-10 m/s 2 (or, alternatively, a time acceleration of at = (2.92±0.44) × 10-18 s/s 2). This signal has become known as the Pioneer anomaly; the nature of this anomaly remains unexplained. We discuss the current state of the efforts to retrieve the entire data sets of the Pioneer 10 and 11 radiometric Doppler data. We also report on the availability of recently recovered telemetry files that may be used to reconstruct the engineering history of both spacecraft using original project documentation and newly developed software tools. We discuss possible ways to further investigate the discovered effect using these telemetry files in conjunction with the analysis of the much extended Pioneer Doppler data. In preparation for this new upcoming investigation, we summarize the current knowledge of the Pioneer anomaly and review some of the mechanisms proposed for its explanation. We emphasize the main objectives of this new study, namely (i) analysis of the early data that could yield the true direction of the anomaly and thus, its origin, (ii) analysis of planetary encounters, which should say more about the onset of the anomaly (e.g. Pioneer 11's Saturn flyby), (iii) analysis of the entire dataset, which should lead to a better determination of the temporal behavior of the anomaly, (iv) comparative analysis of individual anomalous accelerations for the two Pioneers with the data taken from similar heliocentric distances, (v) the detailed study of on-board systematics, and (vi) development of a thermal-electric-dynamical model using on-board telemetry. The outlined strategy may allow for a higher accuracy solution for the anomalous acceleration of the Pioneer spacecraft and, possibly, will lead to an unambiguous determination of the origin of the Pioneer anomaly.



Sign in / Sign up

Export Citation Format

Share Document