Soil behavior during freezing and thawing using variable and constant confining pressure triaxial tests

2001 ◽  
Vol 38 (4) ◽  
pp. 863-875 ◽  
Author(s):  
Erik Simonsen ◽  
Ulf Isacsson

Although variable confining pressure (VCP) triaxial tests are generally preferred to constant confining pressure (CCP) triaxial tests due to the more realistic stress application, VCP tests have never been utilized when investigating freeze–thaw effects on unbound road materials. In this study, three soils were investigated for resilient behavior during freezing and thawing utilizing both VCP and CCP triaxial testing. The soils were tested at selected temperatures between +20 and –10°C during one full freeze–thaw cycle. The results were analyzed in terms of the traditionally used resilient modulus and Poisson's ratio, as well as volumetric and shear components, and indicate a significant difference in moduli computed from CCP and VCP data. However, resilient moduli display compatible values when interpreted in terms of mean values of deviator stress and mean normal stress. With regard to freezevthaw effects on resilient moduli, the results are inconsistent with previous findings. However, this can be explained by the different test conditions applied.Key words: freeze–thaw, triaxial tests, unbound pavement materials, subgrade soils, resilient modulus.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Gongfeng Xin ◽  
Anshun Zhang ◽  
Zijian Wang ◽  
Quanjun Shen ◽  
Minghao Mu

The service performance of subgrade depends on the dynamic resilient modulus (MR) of subgrade soils. Meanwhile, due to complicated conditions such as rainfall infiltration, high temperature evaporation, and groundwater level fluctuations, it can be safely said that the humidity state and repeated wetting-drying (WD) cycles affect the MR of subgrade soils. The object of this study is to conduct a series of dynamic triaxial tests after WD cycles to investigate the characteristics of the MR under various factors. The main results are as follows: (i) the MR decreased with the increase of deviator stress and rose with the growth of confining pressure; (ii) the humidification effect caused by the increase in moisture content attenuated the MR; (iii) the accumulation of WD cycles damaged the MR; however the decline rate was gradually retarded until it was stable with WD cycles 5 times; (iv) the satisfactory prediction model for the MR of subgrade soils considering WD cycles was proposed and verified. It is expected that the findings can provide valuable contributions for road engineering.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Huren Rong ◽  
Jingyu Gu ◽  
Miren Rong ◽  
Hong Liu ◽  
Jiayao Zhang ◽  
...  

In order to study the damage characteristics of the yellow sandstone containing pores under the freeze-thaw cycle, the uniaxial compression test of saturated water-stained yellow sandstones with different freeze-thaw cycles was carried out by rock servo press, the microstructure was qualitatively analyzed by Zeiss 508 stereo microscope, and the microdamage mechanism was quantitatively studied by using specific surface area and pore size analyzer. The mechanism of weakening mechanical properties of single-hole yellow sandstone was expounded from the perspective of microstructure. The results show the following. (1) The number of freeze-thaw cycles and single-pore diameter have significant effects on the strength and elastic modulus of the yellow sandstone; the more the freeze-thaw cycles and the larger the pore size, the lower the strength of the yellow sandstone. (2) The damage modes of the yellow sandstone containing pores under the freeze-thaw cycle are divided into five types, and the yellow sandstone with pores is divided into two areas: the periphery of the hole and the distance from the hole; as the number of freeze-thaw cycles increases, different regions show different microscopic damage patterns. (3) The damage degree of yellow sandstone is different with freeze-thaw cycle and pore size. Freeze-thaw not only affects the mechanical properties of yellow sandstone but also accelerates the damage process of pores. (4) The damage of the yellow sandstone by freeze-thaw is logarithmic function, and the damage of the yellow sandstone is a power function. The damage equation of the yellow sandstone with pores under the freezing and thawing is a log-power function nonlinear change law and presents a good correlation.


2021 ◽  
Vol 3 (10) ◽  
Author(s):  
Xiaolan Liu ◽  
Xianmin Zhang ◽  
Xiaojiang Wang

AbstractThis paper describes an investigation into the factors influencing the resilient modulus and cumulative plastic strain of frozen silty clay. A series of dynamic triaxial tests are conducted to analyze the influence of the temperature, confining pressure, frequency, and compaction degree on the resilient modulus and cumulative plastic strain of frozen silty clay samples. The results show that when the temperature is below − 5 °C, the resilient modulus decreases linearly, whereas when the temperature is above − 5 °C, the resilient modulus decreases according to a power function. The resilient modulus increases logarithmically when the frequency is less than 2 Hz and increases linearly once the frequency exceeds 2 Hz. The resilient modulus increases as the confining pressure and compaction degree increase. The cumulative plastic strain decreases as the temperature decreases and as the confining pressure, frequency, and compaction degree increase. The research findings provide valuable information for the design, construction, operation, maintenance, safety, and management of airport engineering in frozen soil regions.


Author(s):  
P. Kalantari ◽  
M. Bernier ◽  
K. C. McDonal ◽  
J. Poulin

Seasonal terrestrial Freeze/Thaw cycle in Northern Quebec Tundra (Nunavik) was determined and evaluated with passive microwave observations. SMOS time series data were analyzed to examine seasonal variations of soil freezing, and to assess the impact of land cover on the Freeze/Thaw cycle. Furthermore, the soil freezing maps derived from SMOS observations were compared to field survey data in the region near Umiujaq. The objective is to develop algorithms to follow the seasonal cycle of freezing and thawing of the soil adapted to Canadian subarctic, a territory with a high complexity of land cover (vegetation, soil, and water bodies). Field data shows that soil freezing and thawing dates vary much spatially at the local scale in the Boreal Forest and the Tundra. The results showed a satisfactory pixel by pixel mapping for the daily soil state monitoring with a > 80% success rate with in situ data for the HH and VV polarizations, and for different land cover. The average accuracies are 80% and 84% for the soil freeze period, and soil thaw period respectively. The comparison is limited because of the small number of validation pixels.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Zheng Lu ◽  
Yang Zhao ◽  
Shaohua Xian ◽  
Hailin Yao

Dynamic resilient modulus is the design index of highway subgrade design code in China, which is significantly affected by the traffic loads and environmental changes. In this study, dynamic triaxial tests were conducted to investigate the influence of moisture content, compaction degree, cyclic deviator stress, and confining pressure on lime-treated expansive soil. The suitability of UT-Austin model to lime-treated expansive soils was verified. The results indicate that the dynamic resilient modulus of lime-treated expansive soils increases nonlinearly with the increase of compaction degree, while decreases nonlinearly with the increase of dynamic stress level. The dynamic resilient modulus decreases linearly with the increase of moisture content and increases linearly with the increase of confining pressure. Moreover, the moisture content has a more significant effect on the dynamic resilient modulus of lime-treated expansive soil. Therefore, it is necessary to ensure the stability of soil humidity state and its excellent mechanical properties under long-term cyclic loading for the course of subgrade filling and service. Finally, the calculated results of the UT-Austin model for dynamic resilient modulus show a good agreement with the test results.


2019 ◽  
Vol 9 (17) ◽  
pp. 3460 ◽  
Author(s):  
Qiang Du ◽  
Ting Pan ◽  
Jing Lv ◽  
Jie Zhou ◽  
Qingwei Ma ◽  
...  

Application of sandstone in cement-stabilized macadam (CSM) is an effective way to utilize sandstone. To determine the feasibility of using sandstone as a CSM aggregate, a series of experimental investigations, such as unconfined compressive strength (UCS) tests, Brazilian splitting tests and freeze-thaw cycle tests, were conducted on sandstone cement-stabilized macadam (SCSM). Three mixed variables, covering the cement content, aggregate type and curing period, were set as influence factors. The testing results indicated that the UCS, indirect tensile strength (ITS) and frost resistance property of the test-pieces increased with cement content and curing age. Considering the asphalt pavement design specifications for China, the UCS and ITS values of the SCSM complied with the requirements of light traffic road construction before freeze-thaw cycles. However, the SCSM subjected to freezing and thawing meets the requirements only when the cement content is 4.5%. Therefore, it is noteworthy that CSM containing sandstone aggregates should be applied with caution in cold region because of insufficient freeze resistance.


1991 ◽  
Vol 18 (4) ◽  
pp. 581-589 ◽  
Author(s):  
Michel Pigeon ◽  
Marcel Langlois

There is some controversy about freezing resistance of concrete containing superplasticizers. It has been quite convincingly demonstrated that, in some cases, such admixtures can significantly alter air-void systems in concrete. Some researchers believe, however, that concrete with superplasticizers can resist frost even when the air-void spacing factor is higher than the usual limit of 200 μm. The freeze–thaw cycle resistance tests described in this paper show that with the two types of concrete tested (a plain concrete with a water/cement ratio of 0.50 and a concrete with the same water/cement ratio but containing silica fume), the critical air-void spacing factor value is not significantly affected by the presence of a superplasticizer. When regular concrete is to be exposed to freeze–thaw conditions, the air-void system should meet the usual standards even when a superplasticizer is present. Key words: concrete, freezing and thawing, durability, superplasticizer, spacing factor, silica fume, water–cement ratio. [Journal translation]


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 372-373
Author(s):  
Mikhail A Zhilinsky ◽  
Evgeniya K Tomgorova ◽  
Baylar S Iolchiev ◽  
Anastasia N Vetokh ◽  
Hanum V Ashraf ◽  
...  

Abstract Sperm cryopreservation is one of the most important elements for the creation of genetic material cryobanks in order to preserve the gene pool of poultry. Cryopreservation methods and parameters directly affect the viability of germ cells after thawing. The effect of freeze-thaw cycles on biological usefulness of bird sperm was studied. Semen was frozen in paillettes. Thawing sperm was carried out at a temperature of 38 °С. Sperm activity was assessed using CASA technology “ARGUSSOFT”. Sperm motility after cryopreservation decreased in roosters, quails and guinea fowls by 62 ± 3 %, 66 ± 1 % and 60 ± 1 %, respectively. The proportion of live sperm also decreased: in roosters - from 89 ± 4 % to 48 ± 2 %, in quails - from 93 ± 3 % to 49 ± 3 %, in the guinea fowls - from 92 ± 2 % to 45 ± 4 %. As a result of freezing and thawing, the proportion of spermatozoa with abnormal morphology increased. A change in the frequency of anomalies occurrence in individual segments was observed. The number of spermatozoa with flagella pathology was increased. The proportion of sperm with pathology of the head, middle section and flagellum increased by 0.4 %, 0.4 % and 1.3 % (P ≤ 0.001) respectively, in the frozen-thawed samples of roosters, compared with the indicators established for a freshly obtained ejaculate. A similar trend was observed in other poultry types. Thus, the freeze-thaw cycle had a negative effect on the activity and viability of poultry spermatozoa. Supported by RSF No 16-16-04104.


2013 ◽  
Vol 716 ◽  
pp. 688-692 ◽  
Author(s):  
Xiang Dong Hu ◽  
Jin Tai Wang ◽  
Xing Fu Yu

The artificial ground freezing (AGF) is now widely employed in constructions with the expanding underground space exploitation in Shanghai. In order to avoid geological disasters which might appear in the AGF practice, it is urgently needed to do laboratory tests on the physical and mechanical characters of Shanghai soft soil under freezing and thawing action. This paper tests three kinds of soils from the location ofShanghai Metro line 4 constructions in different state, i.e. original state, freeze-thaw state and secondary freeze-thaw state, and obtains the changing rules of soil characters under secondary freeze-thaw action.


Sign in / Sign up

Export Citation Format

Share Document