A method for correlating large penetration test (LPT) to standard penetration test (SPT) blow counts

2003 ◽  
Vol 40 (1) ◽  
pp. 66-77 ◽  
Author(s):  
Chris R Daniel ◽  
John A Howie ◽  
Alex Sy

The standard penetration test (SPT) split-spoon sampler is too small for investigations in gravelly soils. For this reason, several researchers have developed scaled-up versions of the SPT, commonly referred to as "large penetration tests" (LPT), and attempted to correlate the measured blow counts to SPT blow counts. Several LPTs have been in use worldwide; each with different drill rods, sampler dimensions, and hammer energies; hence existing published LPT–SPT correlations differ for each system. This paper summarizes the LPT data in the literature and presents a fundamental method for predicting LPT–SPT correlations. The proposed method is based on wave equation analyses of SPT and LPT and considers variations in test equipment, penetration resistance, and energy. It is shown that the method provides a unified approach for assimilating the various published LPT–SPT correlations. Additional SPT and LPT data were collected at a sand research site to check the proposed method and to expand the LPT database. The observed and predicted correlation factors are shown to be in good agreement. The proposed correlation method will be useful as a logical framework for the comparison of LPT data collected throughout the world. Additional research will be required to extend this procedure to gravel sites.Key words: large penetration test, LPT, fundamental correlation method, wave equation analysis, grain size effects.

2017 ◽  
Vol 36 (3) ◽  
pp. 671-676
Author(s):  
JA Sadeeq ◽  
AB Salahudeen

Strength characteristics of foundation soils in the Permanent site of the Federal University Lokoja in Kogi State were evaluated based on standard penetration test (SPT) results using some conventional analytical models proposed by different researchers. The study was carried out in order to take precise engineering decisions on the type of foundations suitable for the proposed structures and to determine the optimal depth of foundation embedment.  The SPT N-values were first corrected to the standard average energy of 60% (N60) before they were used to correlate soil properties. Evaluation of the soil properties were done at foundation embedment depths of 0.6, 2.1 and 3.6 m. Results show that bearing capacity generally increased with boring depth. Based on the Meyerhof allowable bearing pressure estimation method, foundation pressures in the range of 150 – 600  kN/m2 were evaluated for use in the study area at shallow depths (depths in the range of 0.6 - 3.6 m).http://dx.doi.org/10.4314/njt.v36i3.2


2017 ◽  
Vol 54 (9) ◽  
pp. 1272-1283 ◽  
Author(s):  
Mason Ghafghazi ◽  
Jason T. DeJong ◽  
Daniel W. Wilson

The Becker penetration test (BPT) is the only tool available for characterizing gravelly soils with a probe diameter that is meaningfully larger than that of the standard penetration test (SPT) and the cone penetration test (CPT). Measurements on the BPT system during operation provide information on how penetration is controlled by the driving energy and frictional resistance along the shaft. This has led to development of the instrumented Becker penetration test (iBPT), which uses measurements of force and acceleration obtained directly behind the drill string tip to compute the residual energy and displacement induced by each hammer blow. These measurements are used to produce a continuous profile of normalized blow counts that are repeatable, unaffected by varying driving energy or accumulated shaft resistance, and can be used to directly estimate equivalent SPT N60 blow count values as per DeJong et al. and Ghafghazi et al. in their 2017 studies. The measurements obtained also enabled evaluation of previously developed methods by Harder and Seed in 1986 and Sy and Campanella in 1994. This evaluation revealed that the hammer energy normalization approaches employed by Sy and Campanella and especially Harder and Seed are not robust across the broad range of conditions observed. The predicted equivalent SPT N60 values by Harder and Seed and Sy and Campanella methods are influenced by the shaft resistance magnitude as both methods are based on above-ground field measurements. Estimated N60 values produced by the two methods can be inconsistent with each other, with N60 values produced by the iBPT, and with measured N60 values obtained directly from SPT (where values are obtained in the absence of gravel).


Author(s):  
Timothy D. Stark ◽  
Ahmed K. Baghdady ◽  
Abdolreza Osouli ◽  
Heather Shoup ◽  
Michael A. Short

Standard penetration tests (SPTs) have been used to estimate strength parameters of soils and weak rocks when it is difficult to obtain high-quality samples for laboratory shear testing. SPTs require 45 cm (18 in.) of split-spoon sampler penetration to determine the blowcounts per 0.3 m (1 ft), which is difficult to impossible to obtain in weak rock, that is, intermediate geomaterials. As a result, a modified SPT is presented here for sampler penetrations less than 45 cm (18 in.) in weak rocks. This new procedure is termed the modified standard penetration test (MSPT) and uses the penetration rate, not the sum of penetration blowcounts per 0.3 m, to estimate the unconfined compressive strength for the design of drilled shafts in weak fine-grained rocks. The penetration rate is the inverse of the linear slope of the penetration depth versus blowcount relationship. With this new test and interpretation procedure, 45 cm (18 in.) of sampler penetration is no longer required to estimate the unconfined compressive strength of weak rocks. An empirical correlation between MSPT penetration rate and laboratory-measured unconfined compressive strength is presented here for weak Illinois shale. This correlation could be used to estimate the unconfined compressive strength for the design of drilled shafts in weak rocks.


Author(s):  
Joseph P. Koester ◽  
Chris Daniel ◽  
Michael L. Anderson

A series of dynamic in situ penetration tests was performed in deep alluvial gravel deposits at Seward, Alaska, that were shaken and apparently liquefied by the March 27, 1964, Alaska earthquake. Both a U.S. standard penetration test split spoon and a larger-diameter drive sampler were used, and dynamic cone penetrometers of two sizes were also driven into the gravels near the mouth of the Resurrection River that had exhibited settlement and lateral spreading as a result of earthquake shaking. Two safety hammers were used [nominally 623 N (140 lb) and 1334 N (300 lb)], and the energy delivered with various hammer and penetrometer combinations was measured throughout all tests. Limited measurements of hammer velocity were also made by a radar system developed for that purpose to allow for kinetic energy determination. Soils recovered in the split spoon samplers were sent to the U.S. Army Engineer Waterways Experiment Station Soils Research Facility in Vicksburg, Mississippi, where they were evaluated for classification (gradation and index properties). The sampling and testing procedures used at the Seward site, as well as preliminary analysis of the various penetration test results, are summarized. Comparisons are made with penetration resistance measurements made by the Alaska Highway Department immediately after the 1964 earthquake. Results of this investigation will be adapted to guide future practice for in situ determination of liquefaction resistance in coarse alluvial soils.


2012 ◽  
Vol 204-208 ◽  
pp. 425-428
Author(s):  
Zhen Zhong Cao ◽  
Xue Yan Xu ◽  
Xiao Ming Yuan

The Chinese Dynamic Penetration Test (DPT) was used following the 2008 Wenchuan earthquake to measure penetration resistances of gravels that liquefied and nearby gravels that did not. The test has many advantages, including simplicity, continuous data acquisition, and robust equipment that is easily transported by light vehicles and low cost. A probability formula, developed from logistic procedures, was proposed using the 47 compiled DPT data. The DPT could be a viable test for measurement of penetration resistance of gravels in other parts of the world beyond China.


1986 ◽  
Vol 23 (3) ◽  
pp. 297-303 ◽  
Author(s):  
Nabil F. Ismael ◽  
Abdul Majeed Jeragh

The results of a recent in situ testing program to establish standard penetration test – cone penetration test (SPT–CPT) correlation for the windblown calcareous desert sands of Kuwait are presented and analyzed. The program consisted of auger borings and static cone tests at five sites along a 35 km long corridor. The resulting correlation was employed for prediction of the allowable soil pressure of footings at seven sites in Kuwait where load tests were carried out on square concrete footings placed at a depth of 1 m below ground surface. A comparison of the measured to the predicted soil pressures using the Schmertmann method indicated very close agreement. The average ratio of measured to predicted soil pressure is 93% for the seven test sites. Recommendations are made for further testing to determine the long-term settlement components due to creep and cyclic loading. Key words: load tests, sands, footings, allowable pressure, settlement, field tests, borings, cone penetration tests.


Author(s):  
H. Erwig ◽  
J. I. Pattinson

AbstractA site investigation has been carried out at Norwich, Norfolk consisting of deep boreholes and static electric cone penetration tests. Notes are given on the methods of investigation and on tentative classification of the weak chalk in this area together with the measured parameters of cone end resistance and standard penetration test ‘N’ values.


Author(s):  
Y. Ait Ferhat ◽  
A. Boulenouar ◽  
N. Benamara ◽  
L. Benabou

The main objective of this work is to present a numerical modeling of mixed-mode fracture in isotropic functionally graded materials (FGMs), under mechanical and thermal loading conditions. In this paper, the displacement-based method, termed the generalized displacement correlation (GDC) method, is investigated for estimating stress intensity factor (SIF). Using the ANSYS Parametric Design Language (APDL), the continuous variations of the material properties are incorporated by specified parameters at the centroid of each element. This paper presents various numerical examples in which the accuracy of the present method is verified. Comparisons have been made between the SIFs predicted by the GDC method and the available reference solutions in the current literature. A good agreement is achieved between the results of the GDC method and the reference solutions.


2007 ◽  
Vol 21 (13n14) ◽  
pp. 2204-2214 ◽  
Author(s):  
BEATE PAULUS

The method of increments is a wavefunction-based ab initio correlation method for solids, which explicitly calculates the many-body wavefunction of the system. After a Hartree-Fock treatment of the infinite system the correlation energy of the solid is expanded in terms of localised orbitals or of a group of localised orbitals. The method of increments has been applied to a great variety of materials with a band gap, but in this paper the extension to metals is described. The application to solid mercury is presented, where we achieve very good agreement of the calculated ground-state properties with the experimental data.


Sign in / Sign up

Export Citation Format

Share Document