Unstable behaviour of sand and its implication for slope instability

2003 ◽  
Vol 40 (5) ◽  
pp. 873-885 ◽  
Author(s):  
J Chu ◽  
S Leroueil ◽  
W K Leong

Results of some constant shear-drained (CSD) tests conducted on both loose and dense sand are presented. Using the critical state line and a modified state parameter, a new framework for analysing the instability of granular soil slopes is proposed. The test data were examined and interpreted using the new framework. Instability lines for sand with different void ratios were established within this framework. The conditions for the occurrence of instability in both contractive and dilative granular soil slopes under various shear stress levels were examined using the proposed framework.Key words: deformation, laboratory tests, liquefaction, sands, shear strength, slope stability.

2010 ◽  
Vol 47 (4) ◽  
pp. 400-412 ◽  
Author(s):  
Dariusz Wanatowski ◽  
Jian Chu ◽  
Wai Lay Loke

Flowslide or failure of loose granular soil slopes is often explained using liquefaction or instability data obtained from undrained triaxial tests. However, under static loading conditions, the assumption of an undrained condition is not realistic for sand, particularly clean sand. Case studies have indicated that instability of granular soil can occur under essentially drained conditions (e.g., the Wachusett Dam failure in 1907). Laboratory studies on Changi sand by Chu et al. in 2003 have shown that sand can become unstable under completely drained conditions. However, these studies were carried out under axisymmetric conditions and thus, cannot be applied directly to the analysis of slope failures. In this paper, experimental data obtained from plane-strain tests are presented to study the instability behaviour of loose and dense sand under plane-strain conditions. Based on these test data, the conditions for the occurrence of drained instability in plane strain are established. Using the modified state parameter, the conditions for instability under both axisymmetric and plane-strain conditions can be unified. A framework for interpreting the instability conditions of sandy slopes developed under axisymmetric conditions also extends into plane-strain conditions.


2013 ◽  
Vol 50 (10) ◽  
pp. 1067-1076 ◽  
Author(s):  
Abouzar Sadrekarimi

Critical-state soil mechanics is a useful framework to understand sand behavior. In this paper, a relationship is developed for estimating undrained critical shear strength of sands based on the critical-state framework. The application of this relationship is demonstrated by comparison with laboratory test results and sand liquefied strength from field liquefaction flow failure case histories. Using this relationship, the effects of effective stress variation and density on undrained critical shear strength are studied for different combinations of critical-state line parameters corresponding to several reference sands. The parametric study indicates that depending on sand void ratio, undrained critical shear strength may increase, remain the same or decrease as sand shearing–compressibility (represented by the slope of the critical-state line) increases. The underlying mechanisms of field failures in dense sands and reverse behavior of compressible sands are explained through this relationship. It is suggested that the critical-state parameter alone is insufficient for describing the behavior of liquefiable sands and sand shearing–compressibility should be also taken into account for estimating undrained shear strength corresponding to the changes in density and effective confining stress.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Afaff Emhemed Ettbeb ◽  
Zulfahmi Ali Rahman ◽  
Wan Mohd Razi Idris ◽  
Jumaat Adam ◽  
S. Abd. Rahim ◽  
...  

It is widely recognized that vegetation plays a significant role in contrasting slope instability through the root reinforcement. The main objectives of this paper are to evaluate the root tensile of selected Pennisetum species, namely, P. pedicellatum (PPd) and P. polystachion (PPl), and to determine the soil shear strength of root-permeated soil from these species. The selected species were initially planted in the polybags using the hydroseeding technique. A mineral fertilizer of NPK ratio 10 : 8 : 10 was adopted in the hydroseeding mixture. Routine watering program was applied twice a day throughout growth observation for six months. Four replications were prepared for each species including a set of control polybags, which contained only soil for reference and comparison. The results of root tensile tests revealed the significant relationships between root diameter and tensile force. In comparison, the PPl was still indicated by higher values of root tensile force than PPd. The presence of roots clearly has contributed to the shear stress of root-permeated soils. The root density based on root biomass measurement attributed to the higher value of peak shear stress as achieved by PPl than PPd. The combined effects of root tensile and the soil shear strengths of this selected species can be used as biological materials in slope protection against erosion.


2015 ◽  
Vol 52 (9) ◽  
pp. 1374-1384
Author(s):  
Poul V. Lade ◽  
Jerry A. Yamamuro

Many steep soil slopes are apparently stable beyond what is indicated by slope stability analysis. The mechanism of slope stability in dilating soils is explained in detail, and the development of shear strength in such soils is demonstrated by drained and undrained tests on dense sand. It is argued that appropriate shear strength parameters for analysis of slope stability in dilating materials describe the residual strength. It is explained how reliance on peak shear strength parameters is unsafe, because the component of shear strength created by the additional effective confining pressure caused by development of suction due to inhibited dilation can be exhausted by either access to water or by drying the soil. The fleeting phenomenon of apparent additional shear strength causes super-stability of the slope. Exhaustion of the soil’s capacity to dilate results in reduction of shear strength and instability of the steep slope. It is difficult to predict the time when the soil’s capacity to dilate is exhausted and when the consequent decline in shear strength occurs. This is because this decline occurs with access to water. This is demonstrated by triaxial compression tests on saturated and partly saturated, dilating specimens.


2011 ◽  
Vol 90-93 ◽  
pp. 1743-1747
Author(s):  
Dong Wang ◽  
Jian Xin Zhang ◽  
Bin Tian ◽  
Jia Cao

In order to discuss the friction resistance properties between pile and soil, three groups of shear laboratory tests of pile-soil interface are adopted among concrete-soil , steel-soil and plastic(HDPE)-soil, and each test applies six normal stresses. The result indicates that with the growth of normal stress, the shear strength of pile-soil are increased; under the same normal stress, there is little change in frontal parts of curve with shear stress and displacement, but the rest of curve have a striking change along with the increase of normal stress; when the normal stress is less, the shear stress of different interfaces have little change; when the normal stress is greater, it shows that the shear strength of HDPE-soil interface is the greatest.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2542
Author(s):  
Junxiu Lv ◽  
Xiaoyuan Zhang

This study mainly investigates the prediction models of shear parameters and dynamic creep instability for asphalt mixture under different high temperatures to reveal the instability mechanism of the rutting for asphalt pavement. Cohesive force c and internal friction angle φ in the shear strength parameters for asphalt mixture were obtained by the triaxial compressive strength test. Then, through analyzing the influence of different temperatures on parameters c and φ, the prediction models of shear strength parameters related to temperature were developed. Meanwhile, the corresponding forecast model related to confining pressure and shear strength parameters was obtained by simplifying the calculation method of shear stress level on the failure surface under cyclic loading. Thus, the relationship of shear stress level with temperature was established. Furthermore, the cyclic time FN of dynamic creep instability at 60 °C was obtained by the triaxial dynamic creep test, and the effects of confining pressure and shear stress level were considered. Results showed that FN decreases exponentially with the increase in stress levels under the same confining pressure and increases with the increase in confining pressure. The ratio between shear stress level and corresponding shear strength under the same confining pressure was introduced; thus, the relationship curve of FN with shear stress level can eliminate the effect of different confining pressures. The instability prediction model of FN for asphalt mixture was established using exponential model fitting analysis, and the rationality of the model was verified. Finally, the change rule of the parameters in the instability prediction model was investigated by further changing the temperature, and the instability forecast model in the range of high temperature for the same gradation mixture was established by the interpolation calculation.


2019 ◽  
Vol 92 ◽  
pp. 16010
Author(s):  
Benjamin Cerfontaine ◽  
Jonathan Knappett ◽  
Michael Brown ◽  
Aaron Bradshaw

Plate and screw anchors provide a significant uplift capacity and have multiple applications in both onshore and offshore geotechnical engineering. Uplift design methods are mostly based on semi-empirical approaches assuming a failure mechanism, a normal and a shear stress distribution at failure and empirical factors back-calculated against experimental data. However, these design methods are shown to under- or overpredict most of the existing larger scale experimental tests. Numerical FE simulations are undertaken to provide new insight into the failure mechanism and stress distribution which should be considered in anchor design in dense sand. Results show that a conical shallow wedge whose inclination to the vertical direction is equal to the dilation angle is a good approximation of the failure mechanism in sand. This shallow mechanism has been observed in each case for relative embedment ratios (depth/diameter) ranging from 1 to 9. However, the stress distribution varies non-linearly with depth, due to the soil deformability and progressive failure. A sharp peak of normal and shear stress can be identified close to the anchor edge, before a gradual decrease with increasing distance along the shear plane. The peak stress magnitude increases almost linearly with embedment depth at larger relative embedment ratios. Although further research is necessary, these results lay the basis for the development of a new generation of design criteria for determining anchor capacity at the ultimate limiting state.


2020 ◽  
Vol 857 ◽  
pp. 203-211
Author(s):  
Majid Hamed ◽  
Waleed S. Sidik ◽  
Hanifi Canakci ◽  
Fatih Celik ◽  
Romel N. Georgees

This study was undertaken to investigate some specific problems that limit a safe design and construction of structures on problematic soils. An experimental study was carried out to examine the influence of loading rate and moisture content on shear strength of organic soil. Influece of moisture content on interface friction between organic soil and structural materials was also attempted. A commonly used soil in Iraq was prepared at varying moisture contents of 39%, 57% and 75%. The experimental results showed that the increase in water content will decrease the shear stress and the internal friction angle. An increase of the shearing rate was found to decrease the shear stress and internal friction angle for all percetanges of water contents. Further, direct shear tests were carried out to detect the interface shear stress behavior between organic soil and structural materials. The results revealed that the increase in water content was shown to have significant negetavie effects on the interface internal friction and angle shear strength.


Sign in / Sign up

Export Citation Format

Share Document