Finite element modelling of pullout testing on a soil nail in a pullout box under different overburden and grouting pressures

2011 ◽  
Vol 48 (4) ◽  
pp. 557-567 ◽  
Author(s):  
Wan-Huan Zhou ◽  
Jian-Hua Yin ◽  
Cheng-Yu Hong

In this paper, a three-dimensional (3D) finite element (FE) model is developed to simulate the pullout behaviour of a soil nail in a soil-nail pullout box under different overburden and grouting pressures. The FE model simulates all the procedures of a pullout test on a grouted soil nail in a compacted and saturated completely decomposed granite (CDG) soil. The stress–strain behaviour of the CDG soil is described by a modified Drucker–Prager/Cap model, while that of the soil–nail interface is represented by the Coulomb friction model. Triaxial experiment data are used to calibrate the soil parameters in the soil constitutive model. The interface parameters are determined from back-analysis with the laboratory soil-nail pullout data. The soil stress variations surrounding the soil nail during drilling, grouting, saturation, and pullout are all well simulated by the FE modelling and compared with available test data. The comparisons between the modelling and experimental data have shown that the established FE can well simulate the pullout behaviour of a soil nail in a soil mass. Based on this, the verified FE model has the potential to simulate the performance of a soil nail in a field soil slope.

2017 ◽  
Vol 36 (2) ◽  
pp. 35-45
Author(s):  
Henry M. Kiwelu

Experiments were performed on scaled glue laminated bending specimens to observetime dependent development of deformations during drying and wetting. Measurementsdetermined changes in the average moisture content and external shape and dimensionsbetween when specimens were placed into constant or variable climates. Alterations inthe external shape and dimensions reflected changes in the average value anddistribution of moisture and mechanosorptive creep in the glulam. The results are beingused to develop a sequentially-coupled three-dimensional hygrothermal Finite Element(FE) model for predicting temporally varying internal strains and external deformationsof drying or wetting solid wood structural components. The model implies temporallyvarying, and eventual steady, state internal stress distributions in members based onelastic and creep compliances that represent wood within glulam as a continuousorthotropic homogenised material. Thus, predictions are consistent with smearedengineering stress analysis methods rather than being a physically correct analogue ofhow solid wood behaves. This paper discusses limitations of and intended improvementsto the FE modelling. Complementary investigations are underway to address otheraspects of the hygrothermal behaviour of structural members of wood and othermaterials (e.g. reinforced concrete) embedded within superstructure frameworks ofmulti-storey hybrid buildings.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Maryam Mardfekri ◽  
Paolo Gardoni ◽  
Jose M. Roesset

The nonlinear behavior of a laterally loaded monopile foundation is studied using the finite element method (FEM) to account for soil-pile interactions. Three-dimensional (3D) finite element modeling is a convenient and reliable approach to account for the continuity of the soil mass and the nonlinearity of the soil-pile interactions. Existing simple methods for predicting the deflection of laterally loaded single piles in sand and clay (e.g., beam on elastic foundation,p-ymethod, and SALLOP) are assessed using linear and nonlinear finite element analyses. The results indicate that for the specific case considered here thep-ymethod provides a reasonable accuracy, in spite of its simplicity, in predicting the lateral deflection of single piles. A simplified linear finite element (FE) analysis of piles, often used in the literature, is also investigated and the influence of accounting for the pile diameter in the simplified linear FE model is evaluated. It is shown that modeling the pile as a line with beam-column elements results in a reduced contribution of the surrounding soil to the lateral stiffness of the pile and an increase of up to 200% in the predicted maximum lateral displacement of the pile head.


2020 ◽  
Vol 14 (3) ◽  
pp. 7141-7151 ◽  
Author(s):  
R. Omar ◽  
M. N. Abdul Rani ◽  
M. A. Yunus

Efficient and accurate finite element (FE) modelling of bolted joints is essential for increasing confidence in the investigation of structural vibrations. However, modelling of bolted joints for the investigation is often found to be very challenging. This paper proposes an appropriate FE representation of bolted joints for the prediction of the dynamic behaviour of a bolted joint structure. Two different FE models of the bolted joint structure with two different FE element connectors, which are CBEAM and CBUSH, representing the bolted joints are developed. Modal updating is used to correlate the two FE models with the experimental model. The dynamic behaviour of the two FE models is compared with experimental modal analysis to evaluate and determine the most appropriate FE model of the bolted joint structure. The comparison reveals that the CBUSH element connectors based FE model has a greater capability in representing the bolted joints with 86 percent accuracy and greater efficiency in updating the model parameters. The proposed modelling technique will be useful in the modelling of a complex structure with a large number of bolted joints.


Author(s):  
Andrew Lees ◽  
Michael Dobie

Polymer geogrid reinforced soil retaining walls have become commonplace, with routine design generally carried out by limiting equilibrium methods. Finite element analysis (FEA) is becoming more widely used to assess the likely deformation behavior of these structures, although in many cases such analyses over-predict deformation compared with monitored structures. Back-analysis of unit tests and instrumented walls improves the techniques and models used in FEA to represent the soil fill, reinforcement and composite behavior caused by the stabilization effect of the geogrid apertures on the soil particles. This composite behavior is most representatively modeled as enhanced soil shear strength. The back-analysis of two test cases provides valuable insight into the benefits of this approach. In the first case, a unit cell was set up such that one side could yield thereby reaching the active earth pressure state. Using FEA a test without geogrid was modeled to help establish appropriate soil parameters. These parameters were then used to back-analyze a test with geogrid present. Simply using the tensile properties of the geogrid over-predicted the yield pressure but using an enhanced soil shear strength gave a satisfactory comparison with the measured result. In the second case a trial retaining wall was back-analyzed to investigate both deformation and failure, the failure induced by cutting the geogrid after construction using heated wires. The closest fit to the actual deformation and failure behavior was provided by using enhanced fill shear strength.


Author(s):  
Demeng Che ◽  
Jacob Smith ◽  
Kornel F. Ehmann

The unceasing improvements of polycrystalline diamond compact (PDC) cutters have pushed the limits of tool life and cutting efficiency in the oil and gas drilling industry. However, the still limited understanding of the cutting mechanics involved in rock cutting/drilling processes leads to unsatisfactory performance in the drilling of hard/abrasive rock formations. The Finite Element Method (FEM) holds the promise to advance the in-depth understanding of the interactions between rock and cutters. This paper presents a finite element (FE) model of three-dimensional face turning of rock representing one of the most frequent testing methods in the PDC cutter industry. The pressure-dependent Drucker-Prager plastic model with a plastic damage law was utilized to describe the elastic-plastic failure behavior of rock. A newly developed face turning testbed was introduced and utilized to provide experimental results for the calibration and validation of the formulated FE model. Force responses were compared between simulations and experiments. The relationship between process parameters and force responses and the mechanics of the process were discussed and a close correlation between numerical and experimental results was shown.


2014 ◽  
Vol 695 ◽  
pp. 588-591
Author(s):  
Khairul Salleh Basaruddin ◽  
Ruslizam Daud

This study aims to investigate the influence of trabecular bone in human mandible bone on the mechanical response under implant load. Three dimensional voxel finite element (FE) model of mandible bone was reconstructed from micro-computed tomography (CT) images that were captured from bone specimen. Two FE models were developed where the first consists of cortical bone, trabecular bone and implants, and trabecular bone part was excluded in the second model. A static analysis was conducted on both models using commercial software Voxelcon. The results suggest that trabecular bone contributed to the strength of human mandible bone and to the effectiveness of load distribution under implant load.


2017 ◽  
Vol 7 ◽  
pp. 219-223
Author(s):  
Beril Demir Karamanli ◽  
Hülya Kılıçoğlu ◽  
Armagan Fatih Karamanli

Aims The aim of this study is to evaluate the effects of the chincup appliance used in the treatment of Class III malocclusions, not only on the mandible or temporomandibular joint (TMJ) but also on all the craniofacial structures. Materials and Methods Chincup simulation was performed on a three-dimensional finite element (FE) model. 1000 g (500 g per side) force was applied in the direction of chin-condyle head. Nonlinear FE analysis was used as the numerical analysis method. Results By the application of chincup, stresses were distributed not only on TMJ or mandible but also on the circummaxillary sutures and other craniofacial structures. Conclusions Clinical changes obtained by chincup treatment in Class III malocclusions are not limited by only mandible. It was seen that also further structures were affected.


2000 ◽  
Author(s):  
Subramanya Uppala ◽  
Robert X. Gao ◽  
Scott Cowan ◽  
K. Francis Lee

Abstract The strength and stability of the lumbar spine are determined not only by the bone and muscles, but also by the visco-elastic structures and the interplay between the different components of the spine, such as ligaments, capsules, annulus fibrosis, and articular cartilage. In this paper we present a non-linear three-dimensional Finite Element model of the lumbar spine. Specifically, a three-dimensional FE model of the L4-5 one-motion segment/2 vertebrae was developed. The cortical shell and the cancellous bone of the vertebral body were modeled as 3D isoparametric eight-nodal elements. Finite element models of spinal injuries with fixation devices are also developed. The deformations across the different sections of the spine are observed under the application of axial compression, flexion/extension, and lateral bending. The developed FE models provided input to both the fixture design and experimental studies.


Author(s):  
David A. Hopkins ◽  
Stephen A. Wilkerson

Abstract A series of experiments were recently conducted in an attempt to reduce the dynamic motions of the M256 gun system during firing. Data collected during these experiments included the motion of the gun tube and breech mechanism for both the standard (unbalanced) configuration and a modified system in which mass was added such that the breech center of gravity (CG) was coincident with the gun tube centerline. The results indicated a noticeable change in the dynamic motions between these two configurations. Prior experiments indicated that the unbalanced breech drops several tenths of a millimeter during the firing cycle. Also, the gun tube whipping motion, which is induced by the powder pressure couple, vibrates the gun in a similar fashion regardless of ammunition type. Furthermore, the gun tube shape at shot exit always resembles a distorted sine wave. This behavior was noted for both heat and kinetic energy (KE) munitions in previous unbalanced breech tests conducted with the M256 gun. However, when the breech is balanced, the dynamics of the entire system change in both shape and magnitude of displacement. This report attempts to explain the results of the tests performed. This was accomplished using a three-dimensional (3-D), transient, finite element (FE) model of the entire system, which included breech, gun tube, trunnion mount, recoil, and projectile. Results from these calculations provide an explanation of the observed behavior of the system. Insight acquired about the nature of the system’s behavior was then used to propose several simple improvements to the M256 gun system which can be applied to gun systems in general. Implementation of these changes should decrease the shot-to-shot variability associated with gun accuracy.


2019 ◽  
Vol 281 ◽  
pp. 01006 ◽  
Author(s):  
Majid M.A. Kadhim ◽  
Mohammed J Altaee ◽  
Ali Hadi Adheem ◽  
Akram R. Jawdhari

Fibre reinforced cementitious matric (FRCM) is a recent application of fibre reinforced polymer (FRP) reinforcement, developed to overcome several limitations associated with the use of organic adhesive [e.g. epoxies] in FRPs. It consists of two dimensional FRP mesh saturated with a cement mortar, which is inorganic in nature and compatible with concrete and masonry substrates. In this study, a robust three-dimensional (3D) finite element (FE) model has been developed to study the behaviour of slender reinforced concrete columns confined by FRCM jackets, and loaded concentrically and eccentrically. The model accounts for material nonlinearities in column core and cement mortar, composite failure of FRP mesh, and global buckling. The model response was validated against several laboratory tests from literature, comparing the ultimate load, load-lateral deflection and failure mode. Maximum divergence between numerical and experimental results was 12%. Following the validation, the model will be used later in a comprehensive parametric analysis to gain a profound knowledge of the strengthening system, and examine the effects of several factors expected to influence the behaviour of confined member.


Sign in / Sign up

Export Citation Format

Share Document