Investigations geomecaniques des emplacements de tunnels en rocher sur l'ile de Montreal

1976 ◽  
Vol 13 (4) ◽  
pp. 481-497
Author(s):  
D. E. Gill ◽  
G. Ballivy

Due to the extent of projects of the Montreal Urban Community involving rock tunnelling, the possibility of using full face boring machine had to be considered. The usual site investigation techniques had to be revised. The main purpose of this paper is to describe, discuss and illustrate the new investigation techniques.Problems related to geology that might be encountered with full face boring machines are reviewed and the various investigations which lead to a better geomechanical knowledge of tunnel sites are presented. The diamond drilling program and the aspects which need to be stressed in the reports are discussed.The laboratory testing program includes splitting tests, uniaxial and triaxial compression tests, and modified Handewith punching tests. In situ testing program comprises Ménard pressio-permeameter tests, Goodman jack tests, and borehole punching tests performed with an apparatus developed at Ecole Polytechnique de Montréal.


2003 ◽  
Vol 40 (3) ◽  
pp. 575-586 ◽  
Author(s):  
Simon James Cummings ◽  
Vinayagamoorthy Sivakumar ◽  
Isaac Gregg Doran ◽  
Jim Graham

A 37-m thick layer of stratified clay encountered during a site investigation at Swann's Bridge, near the sea-coast at Limavady, Northern Ireland, is one of the deepest and thickest layers of this type of material recorded in Ireland. A study of the relevant literature and stratigraphic evidence obtained from the site investigation showed that despite being close to the current shoreline, the clay was deposited in a fresh-water glacial lake formed approximately 13 000 BP. The 37-m layer of clay can be divided into two separate zones. The lower zone was deposited as a series of laminated layers of sand, silt, and clay, whereas the upper zone was deposited as a largely homogeneous mixture. A comprehensive series of tests was carried out on carefully selected samples from the full thickness of the deposit. The results obtained from these tests were complex and confusing, particularly the results of tests done on samples from the lower zone. The results of one-dimensional compression tests, unconsolidated undrained triaxial tests, and consolidated undrained triaxial compression tests showed that despite careful sampling, all of the specimens from the lower zone exhibited behaviour similar to that of reconstituted clays. It was immediately clear that the results needed explanation. This paper studies possible causes of the results from tests carried out on the lower Limavady clay. It suggests a possible mechanism based on anisotropic elasticity, yielding, and destructuring that provides an understanding of the observed behaviour.Key words: clay, laminations, disturbance, yielding, destructuring, reconstituted.



2000 ◽  
Vol 37 (6) ◽  
pp. 1241-1251
Author(s):  
R Meriggi ◽  
P Paronuzzi ◽  
L Simeoni

This study reports the main geotechnical characteristics of the Steggio Clay unit, a lacustrine sequence located in a valley of the Veneto Piedmont area (northern Italy). Analyzing the variations of overconsolidation pressure with depth, and the compressibility characteristics of natural, swelled, and reconstituted samples, one can hypothesize about the existence and influence of swelling processes on the stress history of the deposit. The yield pressures, determined by oedometric tests for the various lithostratigraphic units, are compared with the preconsolidation pressures deduced from the geological analysis, and a reduction in apparent preconsolidation pressures is evident in the upper layers. Comparing the natural water content of each stratigraphic unit with that of the overconsolidated and normally consolidated states, it can be seen that the same layers are softened. These phenomena could have been caused by swelling induced by erosion of the overlying deposits, sliding of glacial masses, and unloading due to deglaciation. The results of undrained consolidated triaxial compression tests indicate that the variations between the parameters of mechanical resistance of some lithological units can be attributed to the different values of the void index, Ivo, corresponding to the lithostatic in situ stress.Key words: overconsolidated clays, stress history, swelling, intrinsic characteristics, post-depositional processes, glaciation.



2010 ◽  
Vol 47 (7) ◽  
pp. 775-790 ◽  
Author(s):  
Fatin Altuhafi ◽  
Béatrice A. Baudet ◽  
Peter Sammonds

A series of isotropic compression tests and drained and undrained triaxial compression tests have been performed on glacial sediment from Iceland. Langjökull sediment, which is well graded, is thought to have reached a critical grading during deposition and transportation. Multiple parallel normal compression lines (NCLs) were found, but a unique critical state line (CSL) could be identified. This is unlike other so-called “transitional” soils, whose grading varies between reasonably well graded to gap graded, which tend to have distinct NCLs and critical state lines depending on the specimen density. It is thought that in the case of the Langjökull sediment studied, its particular strain history that involved incessant shearing during deposition accounts for the difference in behaviour. This provides the interesting case of a soil that has been crushed to a critical grading in situ, which depends on the mineralogy of the grains, which was then sampled and tested. Despite the unique grading, samples with a range of different void ratios can be prepared and the combination of grading and density seems to set a fabric that cannot be changed by compression, resulting in multiple parallel NCLs. At the critical state, however, the fabric has been destroyed and the CSL is unique.



Author(s):  
David Reid ◽  
Riccardo Fanni ◽  
Peter DiDonna

A series of direct simple shear (DSS) tests were carried out on a non-plastic sandy silt lead-zinc-silver tailings to develop a relationship between undrained shearing behaviour and density, where in situ testing had identified contractive behaviour. The critical state line was also obtained through triaxial compression tests to enable the DSS tests to be viewed in a critical state framework and allow comparison with in situ testing. It was found that the gravimetric water content (GWC) used to tamp the specimens had a significant effect on the resulting undrained strengths when attempting to achieve dense states - with higher GWC giving lower strength at a given density than a lower GWC. Intact and slurry deposited (SD) samples were also tested to access denser states without inducing tamping-related stresses. These showed a more consistent trend with the loose-tamped specimens, and with other data from the literature. Plausible explanations as to the causes of the increased strength of dense-tamped samples were obtained through estimating potential preconsolidation stresses and “locked in” horizontal stresses that may occur from dense tamping. The importance of these observations on the development of density - strength profiles in engineering practice was outlined.



Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2684
Author(s):  
Dongliang Li ◽  
Zhe Wang ◽  
Deqing Liang ◽  
Xiaoping Wu

The effects of sediments with different clay contents on the mechanical properties of hydrate deposits were studied using a high-pressure, low-temperature triaxial apparatus with in-situ synthesis, as well as the mechanical properties of self-developed hydrate sediments. Through multi-stage loading, triaxial compression tests were conducted by adding quartz sand with different clay contents as the sediment skeleton, and the stress–strain relationship of the shearing process and the strength of sediments with different clay contents were determined. Volumetric changes were also observed during shearing. The results show that the strength of hydrate sediments decreases with the increasing clay content of sediments; in the processes of depressurization and shearing, the hydrate samples exhibited obvious shear shrinkage, regardless of the sediment particle size.



2017 ◽  
Vol 21 ◽  
pp. 319-326
Author(s):  
Mohamed Chikhaoui ◽  
Dashnor Hoxha ◽  
Naima Belayachi ◽  
Ammar Nechnech

This study concerns the ground soils of the second runway of the Es-Sénia airport in Oran (Algeria). This airport was built on a very complex hydro geotechnical site when underground cavities, following the dissolution of gypsum soil, were found during the before-construction geologic studies. Several, techniques are used in laboratory (Permeability, triaxial compression tests at various confining pressure, and hydric tests in saturated and unsaturated conditions) and for in situ it’s used the results of SPT and pressure-meter tests. A comparison of parameters of two soils identified in saturated and partially saturated conditions by in situ and laboratory tests was performed in order to respond to questions of the similarity of hydro mechanical properties of two soils as well as their statistical representativeness of the in-situ reality. It is found that, in respect to the studied parameters, laboratory results are statistically significant and reconstituted soils is statistically representative of natural soil reconstitution.



Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Cong Hu ◽  
Franck Agostini ◽  
Yonggang Jia

Porosity and permeability are the two most important characteristics of underground gas storage in sandstone reservoirs. Injection of gas into reservoir rocks will cause rock deformation. The deformation will influence the porosity and permeability properties of the rocks. We investigate the evolution of these two properties of storage sandstone by triaxial compression tests and a uniaxial in situ compression CT test. As the deviatoric stress increases, the sandstone is compressed firstly (porosity reduction) and then dilates (porosity enhancement). With the increase in confining stress, the occurrence of volumetric dilation will be delayed. Trapped porosity of this sandstone at different deviatoric stresses is very small (0.122%-0.115%) which indicates that nearly all pores are connected. During the compression stage, the decrease in permeability is related to compression of pores and microcracks. During the volumetric dilation stage, it is related to increase in tortuosity. This interpretation can be confirmed by observations of in situ compression CT. The permeability evolution estimated by pore network modeling is consistent with macroscopic testing results.



2010 ◽  
Vol 452-453 ◽  
pp. 225-228
Author(s):  
B. Li ◽  
Y. Jiang

The in-situ tests have been widely used to directly assess the strength and deformability of rock mass, along with which, various numerical approaches were proposed to give rational interpretations to the mechanical phenomenon happening during these tests. In this study, the so-called potential cracks are introduced into DEM model, leading to expanded DEM (EDEM) approach which is capable of simulating the cracking in intact rocks. The EDEM is applied to an in-situ triaixal compression test on a fractured rock sample. The simulation has well represented the failure mode, peak stress and elastic modulus obtained from tests as well as the cracking phenomenon and the slips on fracture planes during the loading process.



Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 880 ◽  
Author(s):  
Rongchuang Chen ◽  
Haifeng Xiao ◽  
Min Wang ◽  
Jianjun Li

In this work, hot compression experiments of 300M steel were performed at 900–1150 °C and 0.01–10 s−1. The relation of flow stress and microstructure evolution was analyzed. The intriguing finding was that at a lower strain rate (0.01 s−1), the flow stress curves were single-peaked, while at a higher strain rate (10 s−1), no peak occurred. Metallographic observation results revealed the phenomenon was because dynamic recrystallization was more complete at a lower strain rate. In situ compression tests were carried out to compare with the results by ex situ compression tests. Hot working maps representing the influences of strains, strain rates, and temperatures were established. It was found that the power dissipation coefficient was not only related to the recrystallized grain size but was also related to the volume fraction of recrystallized grains. The optimal hot working parameters were suggested. This work provides comprehensive understanding of the hot workability of 300M steel in thermal compression.



2015 ◽  
Vol 771 ◽  
pp. 104-107
Author(s):  
Riska Ekawita ◽  
Hasbullah Nawir ◽  
Suprijadi ◽  
Khairurrijal

An unconsolidated undrained (UU) test is one type of triaxial compression tests based on the nature of loading and drainage conditions. In order to imitate the UU triaxial compression tests, a UU triaxial emulator with a graphical user interface (GUI) was developed. It has 5 deformation sensors (4 radial deformations and one vertical deformation) and one axial pressure sensor. In addition, other inputs of the emulator are the cell pressure, the height of sample, and the diameter of sample, which are provided by the user. The emulator also facilitates the analysis and storage of measurement data. Deformation data fed to the emulator were obtained from real measurements [H. Nawir, Viscous effects on yielding characteristics of sand in triaxial compression, Dissertation, Civil Eng. Dept., The University of Tokyo, 2002]. Using the measurement data, the stress vs radial strain, stress vs vertical strain, and Mohr-Coulomb circle curves were obtained and displayed by the emulator.



Sign in / Sign up

Export Citation Format

Share Document