Lateral load tests to examine large-strain (seismic) behaviour of piles

1992 ◽  
Vol 29 (2) ◽  
pp. 245-252
Author(s):  
Ernest Naesgaard

Three different 406 mm diameter piles were tested with lateral, vertical, and moment loadings. The purpose of the full-scale field tests was to assess the ability of the piles to withstand large lateral deformations that may be caused by earthquake-induced soil liquefaction. Two concrete shaft piles were tested to failure with lateral displacements at the pile top of up to 300 and 650 mm and pile curvatures of up to 0.16 and 0.35 rad/m, respectively. The third pile, a concrete-filled steel pipe shaft pile, reached a maximum lateral displacement at the pile top of 550 mm and a curvature of 0.08 rad/m without failure or significant distress. It is concluded that stronger piles that push through the soil may tolerate larger lateral displacements than weaker piles and that reducing the spiral reinforcing pitch from 150to 100 mm on concrete piles greatly increases the pile ductility. Key words : lateral load test, piles, reinforced concrete, concrete-filled pipe, seismic, liquefaction, pile curvature.

1998 ◽  
Vol 35 (5) ◽  
pp. 801-810 ◽  
Author(s):  
Ping-Sien Lin ◽  
Li-Wen Yang ◽  
C Hsein Juang

This paper presents the result of plate-load tests conducted on a gravelly cobble deposit in Taichung Basin, Taiwan. The geologic formation of the gravelly cobble deposit makes it very difficult to obtain large undisturbed samples for laboratory testing. These field tests provide an opportunity to examine the applicability of existing theories on bearing capacity and subgrade reaction in this geologic formation. The modulus of subgrade reaction is of particular importance in the local practice of designing high-rise buildings on mat foundations. The results of the plate-load tests on this soil deposit are analyzed and discussed.Key words: plate-load test, gravelly cobble deposit, modulus of subgrade reaction, bearing capacity.


Author(s):  
Thasan Selvakumar ◽  
Rajendran Senthil ◽  
Rajan Raj Jawahar ◽  
Soundararajan Lakshmana kumar

This work was carried out on the buckling effects of cold-formed perforated steel columns with base auxetic polymer stiffeners. Buckling tests were carried out for three thicknesses of steel profiles (1.5–1.8 mm) with and without base stiffeners. Loading conditions were considered to be with displacement variation of 0.1 mm/s and respective axial loads and lateral displacements were noted. Results obtained states that the lateral displacement was found to be 2.2 for 1.8 mm CFS thickness and 93 kN of axial load with the use of auxetic stiffener with 14.8% of the variation in comparison without stiffener. The strain energy of absorption for auxetic stiffener is found to be high as 0.0523 at a lateral load of 80 kN for 1.8 mm CFS thickness. The maximum resistance to local, distortional, and Euler’s buckling loads was found to be high for 1.8 mm thick CFS with stiffener with 11.1%, 17.39%, and 10% in comparison without stiffener.


2021 ◽  
Vol 30 (3) ◽  
Author(s):  
Szilárd Kanizsár

In 3D geotechnical modelling it is essential for the realistic simulation of soil behavior that the parameters of the hardening soil with small strain constitutive model are specified appropriately. The possibility of deriving these parameters for very stiff cohesive soils similar to the so called Kiscell clay that has a significant role in deep construction projects in Budapest, from laboratory and field tests is rather limited. The results of the pile load test completed for the MOL Campus high-rise building project proved to be useful data source. The article presents the circumstances of the quoted Osterberg-cell pile load tests and the modelling of the pile performed by the above-mentioned soil model. The parameters specified on the basis of laboratory tests - and in absence of those based on literature - data can be fine-tuned by approaching the load test results.


2019 ◽  
Vol 16 (1) ◽  
pp. 191-200
Author(s):  
Yogendra Tandel ◽  
Gaurang Vesmawala

Purpose Piles often carry combination of axial and lateral. Currently, piles are designed separately for axial and lateral load. In the literature, few information is available on the influence of axial load on lateral behaviour of the pile. This paper aims to present the results of load deformation of a pile under pure lateral load and combined axial and lateral load. Design/methodology/approach The field load tests were carried out on four different pile diameters at two different bridge sites. Moreover, the paper addresses the numerical simulation of filed load test carried out on the pile under the combination of axial and horizontal load. Findings After field load tests and numerical simulation, it was found that the vertical load had a remarkable effect on the lateral load response of a pile. The lateral deflection of the pile was decreased about 25% under the effect of vertical load. In addition to this, the results from field and numerical simulation are quite comparable. Originality/value Typical field load tests were simulated numerically. This research adds a value in the areas of pile foundation subjected to vertical and lateral load particularly for structure such as transmission line tower and jetty.


Author(s):  
Rupert G. Tart ◽  
John M. O. Hughes

Structural response analyses of pipelines using computer models, such as AutoPIPE, incorporate soil “springs” to model the restraint provided by pipeline bedding and padding. These “springs” are referred to as spring constants and are most frequently determined from a limited number of sources in the literature. In some cases representative soil properties are used with theoretical and empirical formulae such as those presented by Nyman (1984). This technique which is referred to herein as the ASCE technique has been used by Alyeska Pipeline Service Company (Alyeska) engineers in their calculations of structural response of the buried pipeline along the Trans Alaska Pipeline System (TAPS) (Hart et al, 1998). This paper describes a field study at a pipeline inspection dig in which spring constants were determined directly from a series of field tests to develop a better understanding of the pipeline restraint the bedding and padding is providing for the pipe. Four other papers which cover other aspects of the work performed at this site are also a part of this conference (Hart et al, 1998, Norton et al, 1998, Stevick et al, 1998, Tonkins et al, 1998). The field work included the drilling of multiple boreholes in which drive samples were taken at about 1 to 2 meter (3 to 5 foot) intervals. In each borehole, pressuremeter tests were also conducted at the same intervals as the drive samples. At two levels in the open pipe trench plate, load tests were conducted. Both nuclear and sand cone density tests were made at several levels in the pipe trench. Results of these tests were correlated to each other. Stress strain relationships were developed from the pressuremeter test and plate load test data which were used independently to develop spring constants. Spring constants were found to vary with the strain level in the soils and were correlated to the drive sample blow count data. Recommended methods for estimating spring constants are presented.


DYNA ◽  
2021 ◽  
Vol 88 (217) ◽  
pp. 169-177
Author(s):  
Tiago de Jesus Souza ◽  
André Querelli ◽  
Felipe Vianna Amaral de Souza Cruz ◽  
Pablo Cesar Trejo Noreña

The dynamic load test is currently an important and usual tool for design, control, and quality assurance of deep foundations. The objective of this paper is to compare the expected geotechnical load capacity through empirical and semi-empirical Brazilian methods with the ultimate pile load obtained from the interpretation of Dynamic Load Tests (DLT; PDA). The stress-settlement curve was constructed from CAPWAP analysis with blows of different drop heights of increasing energy – test procedure proposed by Aoki (1989). Continuous flight augering (CFA) Franki and Root piles were evaluated in this study. These piles were tested in different cities in Brazil. Additionally, DLT results were compared with static load tests, and a good correlation was found with these field tests. The article aims to provide comparative background to guide foundation designers, as well as those who routinely develop these projects in Brazil.


2002 ◽  
Vol 39 (3) ◽  
pp. 561-575 ◽  
Author(s):  
L M Zhang ◽  
M C McVay ◽  
S J Han ◽  
P W Lai ◽  
R Gardner

The effects of vertical load on the lateral resistance of single piles were initially reviewed to facilitate the interpretation of the test results of pile groups. Then, 18 different lateral load tests were carried out in the centrifuge on the 3 × 3 and the 4 × 4 fixed-head battered pile groups to investigate the effects of vertical load on the group lateral resistance. Vertical dead loads ranging from approximately 20 to 80% of the vertical ultimate group capacity Puv were applied. Based on these tests, the effects of vertical dead load on the lateral resistance of the battered pile groups are found to depend on pile arrangement, pile inclination, and soil density. The lateral resistances of the 3 × 3 pile groups do not appear to vary considerably with the vertical dead loads in the range of the vertical loads studied. For the 4 × 4 pile groups however, the lateral resistances at vertical loads of approximately 50 and 80% Puv may be 26-29% and even 40% higher than that at the 20% Puv dead load. It may be inferred that designs based on standard lateral load tests with small vertical dead loads would be on the safe side. Three mechanisms for vertical load effects are discussed in terms of axial tension and compression failures, influence of pile inclination, and initial subgrade reaction caused by vertical loading. Preliminary numerical analyses are also performed to simulate the responses of some of the battered pile groups.Key words: pile group, battered pile, lateral resistance, load test, pile-soil interaction, centrifuge test.


2017 ◽  
Vol 54 (9) ◽  
pp. 1231-1244 ◽  
Author(s):  
Sudheesh Thiyyakkandi ◽  
Michael McVay ◽  
Peter Lai ◽  
Rodrigo Herrera

Jetted and grouted precast piles (JGPPs) are prefabricated piles installed utilizing jetting and pressure grouting. These piles are well-suited for urban environments as they overcome the inherent drawbacks of currently chosen deep foundations (e.g., noise and vibration disturbances due to pile driving, quality control issue with cast-in-place construction). Past studies in a large test chamber facility have shown that JGPPs can support very high axial and torsional loads owing to their improved skin and tip resistances subsequent to the side- and tip-grouting. However, this new pile has not yet been implemented in practice due to the lack of field verification of its constructability as well as load resistance. This paper presents the full-scale field construction of two JGPPs and the load test program performed to investigate the applicability of the new pile as a foundation for miscellaneous structures. As such structures are subjected to high torsion and lateral load during severe wind-loading (e.g., hurricanes), the test program included combined torsion and lateral loading as well as simple lateral loading. An actual pole – mast arm assembly was used in the coupled torsion and lateral load test to simulate the typical field-loading scenario. The load was applied using a crane and the pile’s rotations and translations were monitored using the novel instrumentation systems. The field tests showed that JGPPs possess high torsion and lateral resistances compared to identically sized drilled shafts, which is a common foundation type used for such structures. The two methods available for predicting axial resistance of the new pile are found to be suitable for the estimation of torsional resistance as well. It was also found that the concurrent application of torsion significantly reduces lateral resistance of the new pile foundation as observed for drilled shafts. In general, the study reveals that the JGPPs are well-suited foundations for miscellaneous structures.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8598
Author(s):  
Michał Baca ◽  
Alexander L. Ivannikov ◽  
Jarosław Rybak

Due to the development of dedicated software and the computing capabilities of modern computers, the application of numerical methods to analyse more complex geotechnical problems is becoming increasingly common. However, there are still some areas which, due to the lack of unambiguous solutions, require a more thorough examination, e.g., the numerical simulations of displacement pile behaviour in soil. Difficulties in obtaining the convergence of simulations with the results of static load tests are mainly caused by problems with proper modelling of the pile installation process. Based on the numerical models developed so far, a new process of static load test modelling has been proposed, which includes the influence of pile installation on the soil in its vicinity and modelling of contact between steel pile and the soil. Although the presented method is not new, this is relevant and important for practitioners that may want to improve the design of displacement piles. The results of the numerical calculations were verified by comparing them with the results of pipe pile field tests carried out in a natural scale on the test field in Southern Poland.


Sign in / Sign up

Export Citation Format

Share Document