PHYSICAL ADSORPTION STUDIES IN CARBON BLACK TECHNOLOGY

1955 ◽  
Vol 33 (2) ◽  
pp. 314-319 ◽  
Author(s):  
M. H. Polley ◽  
W. D. Schaeffer ◽  
W. R. Smith

The adsorption isotherms of n-butane and butene-1 on typical furnace and channel carbon blacks were determined over a range of temperatures, 55°–250 °C. The adsorption of n-butane on carbon black surfaces is attributed to physical adsorption; however, the extent of surface covered per unit area of carbon black is considerably greater at a given temperature than for a silica. Butene-1 is also physically adsorbed on the furnace blacks. The presence of approximately 3% chemisorbed oxygen on the surface of the channel blacks induces an isomerization of butene-1 to cis-butene-2. When oxygen is first chemisorbed on a furnace black surface, then that surface also interacts with butene-1. Those blacks which participate in the isomerization of butene-1 respond or "interact" in a cyclic heat treated Butyl rubber – carbon black masterbatch.

2019 ◽  
pp. 123-128
Author(s):  
M. N. Nagornaya ◽  
A. V. Myshliavtsev ◽  
S. Ya. Khodakova

The subject of the study were samples of channel technical carbon K354, furnace technical carbon N121 and experimental – based on TUN121, oxidized with active forms of oxygen. Samples of carbon black were studied in the composition of a rubber mixture based on BK 1675N butyl rubber. The purpose of this study was to determine the possibility of using oxidized technical carbon N121 in fillers of rubber based on butyl rubber, instead of carbon black K354. The physicochemical properties of the samples of technical carbon under study, the results of physical and mechanical tests, and the gas permeability tests of rubber mixtures filled with the samples under study are presented. A conclusion is made about the possibility of replacing channel technical carbon K354 with furnace black carbon N121 oxidized with 30% hydrogen peroxide.


1970 ◽  
Vol 43 (5) ◽  
pp. 973-980 ◽  
Author(s):  
A. K. Sircar ◽  
A. Voet

Abstract Determinations have been made of the amount of elastomer unextractable from unvulcanized masticated mixes with carbon black by a given solvent at boil, expressed as immobilized elastomer. Saturated and unsaturated elastomers varying in molecular weights from 2000 to 325,000, were used, while solvents of greatly differing boiling points and solvent power were employed. It could be shown that the bonding between elastomers and carbon black is not a simple adsorption, but involves a higher energy interaction, defined as chemisorption. At successively higher temperatures elastomer is increasingly removed from the carbon black surface. The temperature Tm, obtained by extrapolation of the linear relationship between amounts immobilized and temperature of extraction, represents the temperature theoretically required to eliminate all bonds between carbon black and elastomer and is therefore indicative of the bond strength. Data suggest the existence of a bonding energy spectrum. Upon graphitization, blacks show a considerable decline in high energy bonding ability for elastomers. Saturated elastomers show less bonding than unsaturated elastomers with the same furnace black. “Bound rubber” represents the sum total of physically adsorbed, mechanically entangled, and chemisorbed elastomer. The actual values are greatly dependent upon the procedure used. “Immobilized rubber”, indicating chemisorbed elastomer, is easily determined, is not influenced by the method, and is more significant as an indicator of reinforcement.


1972 ◽  
Vol 45 (1) ◽  
pp. 117-128 ◽  
Author(s):  
W. H. Wade ◽  
M. L. Deviney ◽  
W. A. Brown ◽  
M. H. Hnoosh ◽  
D. R. Wallace

Abstract The heats of immersion of U-1 channel and SAF, SPF, HAF-HS, and HAF furnace blacks have been measured at 25° C in three isoprenoid olefins and four liquid elastomers of the polybutadiene, polyisoprene, and SBR types. An extensive microcalorimeter redesign was necessary because of the high viscosity of these latter fluids. The immersion heats observed with the liquid elastomers were similar to n-decane immersion heats and there was little evidence for specific interactions between these liquids and any of the blacks. The possibility that the very high structure SPF black gives slightly enhanced immersion heats should be further investigated. Since only integral immersion heats could be measured with the non-volatile liquid elastomers, the possibility is not ruled out that specific, relatively high-energy interactions may occur between the adsorbate and a very small fraction of the black surface. The similarities between the immersion heats with n-decane and the liquid elastomers indicate that almost all of the carbon black surface is accessible to the polymer segments. It appears that the rate of heat evolution may be considered a measure of the rate of attainment of intimate molecular contact between the liquid and carbon substrate. The enhancement in heat of wetting with increasing chain length over the C6 to C16 n-alkane series reported by others with a highly uniform, graphitized black was not observed with HAF. Isosteric heats of adsorption of n-butane and butene-1 at low surface coverages on several carbon blacks were calculated from adsorption isotherms obtained with a precision microgravimetric system. The isosteric heats as a function of coverage curves were typical of those expected for heterogeneous surfaces and reflected the presence of high energy physical adsorption sites at low coverages (θ<0.1).


1961 ◽  
Vol 34 (3) ◽  
pp. 709-728 ◽  
Author(s):  
C. W. Sweitzer ◽  
K. A. Burgess ◽  
F. Lyon

Abstract 1. The removal of chemisorbed oxygen from channel black and furnace black, without alteration of the underlying carbon surface, results in only minor effects in reinforcement potential regardless of the curative system employed, whether polar or free radical. 2. When the underlying carbon surface is changed by heat treatment to a state of lower energy, a significant decrease in the reinforcing ability of the carbon black results. 3. Different types of oxygen functional groups added to the carbon surface produce similar effects upon rubber properties. 4. These effects are limited to retardation of cure rate in sulfur curing systems. Only small effects of any kind are produced in the natural rubber-peroxide system. 5. The net conclusion to be drawn is that combined oxygen on the carbon surface plays a relatively minor role in the chemical effect of carbon black upon reinforcement; the nature of the carbon surface itself is of primary importance.


1968 ◽  
Vol 41 (5) ◽  
pp. 1194-1202 ◽  
Author(s):  
P. P. A. Smit

Abstract It can be stated that the effect of carbon black in a rubber vulcanizate with regard to dynamic properties can be explained by assuming physical adsorption of rubber on the black surface. The effect can be represented by assuming an adsorbed layer having different properties from the bulk rubber taking the layer thickness to be at least 20 A. Adsorption-desorption from this layer causes non-linearity and may contribute to losses observed in the glass transition. This adsorption is analogous to adsorption of simple liquids in microporous systems such as silica gel and activated carbon.


1982 ◽  
Vol 55 (5) ◽  
pp. 1403-1412 ◽  
Author(s):  
John D. Ferry ◽  
Edwin R. Fitzgerald

Abstract The dynamic mechanical properties of rubbers loaded with carbon black have been the subject of many investigations because of their importance in the performance of products, especially the energy dissipation, skid resistance, and other properties of vehicle tires. However, the important variables of frequency and temperature in oscillating deformations have usually been explored in fragmentary fashion. In particular, the degree to which these variables can be treated with frequency-temperature superposition appears to differ considerably depending on the type of compound investigated. In many cases, data have been insufficient to establish whether the essential criterion for superposition, namely, the same temperature dependence for all relaxation mechanisms, is satisfied. For this purpose, extensive measurements over wide ranges of closely spaced frequencies and temperatures are required. Such data are needed, in any case, to determine the responses of elements of a vehicle tire over the ranges of temperature and time scale to which they are subjected in use and to provide input information for thermo-mechanical modelling of power loss in tires. This paper is intended to be one of a series on dynamic mechanical properties of a variety of carbon black-loaded compounds over wide ranges of frequency and temperature. It describes results for a vulcanized butyl rubber loaded with a medium processing channel black, and the almost chemically identical linear polymer polyisobutylene loaded with a semireinforcing furnace black; these results are compared with previously published data for vulcanized butyl gum and pure polyisobutylene . The shear strain amplitude in these measurements is very small, of the order of 10−5 to 10−7, in a range of linear viscoelasticity as confirmed by sensitive tests, and thus the Mullins effect is avoided. The prominent dependence of viscoelastic properties on strain amplitude, as investigated by Payne and Watson and later workers, appears at considerably higher strains of 10−3 or more. Of course, the behavior in large deformations will be very different from that described here, but it is important to understand first the properties of the structure close to its equilibrium rest state.


2017 ◽  
Vol 59 (11-12) ◽  
pp. 1054-1060 ◽  
Author(s):  
Mohan Kumar Harikrishna Kumar ◽  
Subramaniam Shankar ◽  
Rathanasamy Rajasekar ◽  
Pal Samir Kumar ◽  
Palaniappan Sathish Kumar

1968 ◽  
Vol 41 (2) ◽  
pp. 382-399 ◽  
Author(s):  
Marvin L. Deviney ◽  
Lawrence E. Whittington

Abstract Radiotracer techniques have been applied to the study of interactions of carbon black surface functional groups with two chosen organic systems. The basic reaction mechanisms demonstrated in this study may have implications in elastomer reinforcement. Direct radiochemical evidence supports the conclusions of Hallum and Drushel (based on less direct polarographic data) that surface quinonic groups exhibit hydrogen abstraction activity toward tertiary hydrogens in paraffinic hydrocarbons. Studies on the system carbon black and styrene using tritium radiotracer have provided direct evidence that phenolic hydrogens participate in the polymerization acceleration and graft polymer formation reaction and are transferred to the growing polystyrene chains as postulated by Donnet. Several methods have been developed for specifically labelling certain oxygenated functional groups on the carbon surface with tritium and for tritium labelling carbon black in aromatic hydrogen positions. The techniques developed in this work and the basic reaction mechanisms derived will permit this investigation to be extended into a radiochemical study of carbon black surface interactions with elastomer related systems of interest to the rubber industry.


Sign in / Sign up

Export Citation Format

Share Document