PHYSICOCHEMICAL STUDIES OF LIGNINSULPHONATES: II. BEHAVIOR AS POLYELECTROLYTES

1955 ◽  
Vol 33 (10) ◽  
pp. 1491-1501 ◽  
Author(s):  
J. L. Gardon ◽  
S. G. Mason

Conductivity, dyestuff adsorption, and viscosity measurements on aqueous solutions of fractionated ligninsulphonate samples having various molecular weights indicate that they behave as flexible polyelectrolytes. There is evidence that ligninsulphonates of molecular weight less than 5000 associate in solution in a manner analogous to micelle formation in colloidal electrolytes. From the variation of intrinsic viscosity with molecular weight, it may be concluded that the degree of molecular branching of the high molecular weight ligninsulphonates is greater than that of the low molecular weight fractions.

1954 ◽  
Vol 32 (2) ◽  
pp. 51-58 ◽  
Author(s):  
C. R. Masson ◽  
G. W. Caines

Viscosities and number average molecular weights of various carrageenin preparations, including thermally and photochemically degraded samples, have been measured. Aqueous solutions of carrageenin of low molecular weight are shown to exhibit viscosity characteristics which are entirely similar to those of other natural and synthetic polyelectrolytes. Solutions of carrageenin of high molecular weight exhibit plastic flow. The relationship between viscosity and molecular weight for the degraded polymer indicates that the molecular configuration in solution is that of a fairly stiff rod, even in the presence of salts.


2020 ◽  
Vol 81 (2) ◽  
pp. 301-308 ◽  
Author(s):  
Wenzhe Song ◽  
Yu Zhang ◽  
Amir Hossein Hamidian ◽  
Min Yang

Abstract The biodegradation of polyacrylamide (PAM) includes the hydrolysis of amino groups and cleavage of the carbon chain; however, the effect of molecular weight on the biodegradation needs further investigations. In this study, biodegradation of low molecular weight PAM (1.6 × 106 Da) was evaluated in two aerobic (25 °C and 40 °C) and two anaerobic (35 °C and 55 °C) reactors over 100 days. The removal of the low molecular weight PAM (52.0–52.6%) through the hydrolysis of amino groups by anaerobic treatment (35 °C and 55 °C) was much higher than that of the high molecular weight (2.2 × 107 Da, 11.2–17.0%) observed under the same conditions. The molecular weight was reduced from 1.6 × 106 to 6.45–7.42 × 105 Da for the low molecular weight PAM, while the high molecular weight PAM declined from 2.2 × 107 to 3.76–5.87 × 106 Da. The results showed that the amino hydrolysis of low molecular weight PAM is easier than that of the high molecular weight one, while the cleavage of its carbon chain is still difficult. The molecular weights of PAM in the effluents from the two aerobic reactors (25 °C and 40 °C) were further reduced to 4.31 × 105 and 5.68 × 105 Da by the biofilm treatment, respectively. The results would be useful for the management of wastewater containing PAM.


2015 ◽  
Vol 60 (2) ◽  
pp. 1561-1564
Author(s):  
E.-H. Lee ◽  
K.-M. Kim ◽  
W.-Y. Maeng ◽  
D.-H. Hur

Abstract After preparing aqueous suspensions from magnetite particles with a poly-acrylic acid, we investigated the effects of several experimental parameters. We characterized the stability of the suspensions using visual inspection, sedimentation, adsorption, and thermal stability of the dispersant. The dispersion stability is affected by the solution pH, the concentrations of magnetite particles, the molecular weight, the concentration of the dispersants, and the temperature. The stability of the suspensions increased as the concentration of the dispersant and the temperature increased. In terms of the molecular weights of the dispersant, the suspensions with dispersant of low-molecular weight (1800) were more stable than those of high-molecular weight (250000) at room temperature. However, at high temperature the suspensions with high-molecular weight showed stability. The adsorption efficiency of the dispersant was very low. The dispersant of high-molecular weight showed a higher thermal integrity than that of low-molecular weight. From this work, we obtained the optimum conditions for stable aqueous suspensions of magnetite particles.


1986 ◽  
Vol 250 (3) ◽  
pp. C460-C467 ◽  
Author(s):  
R. J. King ◽  
H. M. Martin ◽  
J. B. Baseman ◽  
J. Morrison-Plummer

We have used monoclonal antibodies developed against the apolipoproteins associated with pulmonary surfactant purified from rabbit lavage fluid to study the expression of epitopes common to these proteins. The pulmonary surfactant contained nearly 20 proteins, of which at least 10 were not derived from serum. Electrophoresis, with sulfhydryl reduction of these proteins indicated apparent molecular weights of approximately 155, 135, 125, and 115 X 10(3) (high-molecular-weight group); 80, 70, and 60 X 10(3) (intermediate group); and 18 through 10 X 10(3) (low-molecular-weight group). Two-dimensional polyacrylamide gel electrophoresis, in which the proteins were electrophoresed without reduction in the first dimension, but with sulfhydryl reduction in the second dimension, revealed that the 80, 70, and 60 X 10(3) proteins dissociated into proteins of nominal molecular weights of 40, 35, and 30 X 10(3), respectively. In contrast, the 125 and 115 X 10(3) proteins of the high-molecular-weight group contained a protein which could only be reduced to a minimum molecular weight of 55 to 60 X 10(3). Monoclonal antibodies generally were of three types: those that reacted strongly with the high-molecular-weight group and weakly with the intermediate group; those that reacted conversely; and those that reacted only with the low-molecular-weight group. Our results indicate that at least two different surfactant apolipoproteins, with differing minimum molecular weights in SDS-polyacrylamide gel electrophoresis, have common epitopes. Although these results cannot certify a physiological relationship between these proteins, they suggest that the intracellular synthesis or extracellular processing of surfactant apolipoproteins may be more complicated than predicted by the findings of previous experiments, perhaps involving the posttranslational assembly of one surfactant protein into oligomers which resist dissociation under the conditions used for the analyses.


1979 ◽  
Author(s):  
G. Rock ◽  
E. Tackaberry ◽  
D. Palmer

By purifying Factor VIII while maintaining physiological concentrations of calcium we have recently demonstrated that about 50% of the procoagulant activity is in a very low molecular weight (VLHW) form not associated with the carrier (VIII: RAG). The remainder is carrier associated and elutes at Vo as a high molecular weight (HMW) compound upon Sepharose 6B chromatography. Reduction of the calcium concentration by increasing the amount of citrate added to heparin results in decreasing the ratio of VLMW:HMW from 1:1 in pure heparin to 1:5 in pure citrate. If citrate is replaced with the more strongly chelating EDTA no VLMW is detectable in the plasma. It has also been found that most of the biochemical purification techniques which have been previously used to prepare Factor VIII for study actually result in the aggregation of this VLMW with the carrier to produce the high molecular weight form. This includes: cryoprecipitation, precipitation by polyethylene glycol and storage -80°C. As well, the VLMW material will self-associate upon freezing to produce an aggregate with a molecular weight of 106. However, this material does not cross-react with rabbit antibody directed against VIII: RAG. The data indicate that many of the previously reported biochemical characteristics, including molecular weights, actually describe species which are artifacts of the isolation process rather than those of the physiologically occuring Factor VIII.


2004 ◽  
Author(s):  
Kalonji K. Kabanemi ◽  
Jean-Franc¸ois He´tu ◽  
Samira H. Sammoun

An experimental investigation of the flow behavior of dilute, semi-dilute and concentrated polymer solutions has been carried out to gain a better understanding of the underlying mechanisms leading to the occurrence of instabilities at the advancing flow front during the filling of a mold cavity. Experiments were performed using various mass concentrations of low and high molecular weight polyacrylamide polymers in corn syrup and water. This paper reports a new type of elastic fingering instabilities at the advancing flow front that has been observed only in semi-dilute polymer solutions of high molecular weight polymers. These flow front elastic instabilities seem to arise as a result of a mixture of widely separated high molecular weight polymer molecules and low molecular weight solvent molecules, which gives rise to a largely non-uniform polydisperse solution, with respect to all the kinds of molecules in the resulting mixture (solvent molecules and polymer molecules). The occurrence of these instabilities appears to be independent of the injection flow rate and the cavity thickness. Moreover, these instabilities do not manifest themselves in dilute or concentrated regimes, where respectively, polymer molecules and solvent molecules are minor perturbation of the resulting solution. In those regimes, smooth flow fronts are confirmed from our experiments. Based on these findings, the experimental investigations have been extended to polymer melts. Different mixtures of polycarbonate melts of widely separated molecular weights (low and high molecular weights) were first prepared. The effect of the large polydispersity of the resulting mixtures on the flow front behavior was subsequently studied. The same instabilities at the flow front were observed only in the experiments where a very small amount of high molecular weight polycarbonate polymer has been mixed to a low molecular weight polycarbonate melt (oligomers).


1977 ◽  
Vol 55 (11) ◽  
pp. 1190-1196 ◽  
Author(s):  
J. R. Vercellotti ◽  
A. A. Salyers ◽  
W. S. Bullard ◽  
T. D. Wilkins

To obtain an estimate of the extent to which complex carbohydrates are degraded by bacteria in the human colon, aqueous extracts of colon contents from four human subjects were separated into high and low molecular weight fractions by chromatography on a Sephadex G-100 column. The composition of these fractions was compared with the composition of similar fractions from ileal contents, i.e., from material entering the colon. In all four subjects, high molecular weight carbohydrate concentrations were lower in the colon than in the ileum, indicating that breakdown of complex carbohydrate occurs in the colon. The high molecular weight carbohydrate fraction contained sugars characteristic of plant polysaccharides (arabinose, xylose, mannose, rhamnose) as well as sugars characteristic of mucin (fucose, hexosamines, sialic acids). Concentrations of most of these sugars were uniformly lower in the colon than in the ileum. Since high molecular weight protein concentrations were lower in the colon than in the ileum of two of the four subjects tested, some degradation of protein may also occur in the colon.


Author(s):  
Clément Saidou ◽  
Jean Bosco Tchatchueng ◽  
Robert Ndjouenkeu ◽  
Denis CD Roux

In an attempt to understand the potential valorisation of local African legumes, hydrocolloids of five legumes (Corchorus olithorus, Triumfetta cordifolia, Cerathoteca sesamoides, Adansona digitata, and Bridelia thermifolia) were extracted and characterised as polysaccharides. All the gum extracted were rich in galactose residue (31-62 percent), suggesting a galactan backbone for the polysaccharides structure. The other sugar residues of the polysaccharides were arabinose (22-30 percent) in T. cordifolia and B. thermifolia, glucose (22-36 percent) in B. thermofolia, A. digitata and C. olithorus, and mannose (32.9 percent) in C. sesamoides. The intrinsic viscosity measurements showed that gums from T. cordifolia, B. thermifolia, C sesamoides and C. olithorus are high molecular weight polymers, while A. digitata contains low molecular weight polymers. The gum extracts also showed oil/water emulsion activity and were able to keep 60-90 percent of the emulsion stable on heating.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4206
Author(s):  
Long Yan ◽  
Xinyu Tang ◽  
Xiaojiang Xie ◽  
Zhisheng Xu

Four kinds of polyethylene glycol borate (PEG-BA) with different molecular weights were grafted into cyclic phosphate ester (PEA) to obtain flexible phosphate esters (PPBs), and then applied in amino resin to obtain a series of transparent intumescent fire-retardant coatings. The comprehensive properties of the transparent coatings containing different molecular weights of PEG-BA were investigated by various analytical instruments. The transparency and mechanical analyses indicate that the presence of PEG-BA slightly decreases the optical transparency of the coatings but improves the flexibility and adhesion classification of the coatings. The results from fire protection and cone calorimeter tests show that low molecular weight of PEG-BA exerts a positive flame-retarded effect in the coatings, while high molecular weight of PEG800-BA behaves against flame-retarded effect. Thermogravimetric and char residue analyses show that the incorporation of low molecular weight of PEG-BA clearly increases the thermal stability and residual weight of the coatings and generates a more compact and stable intumescent char on the surface of the coatings, thus resulting in superior synergistic flame-retarded effect. In particular, MPPB1 coating containing PEG200-BA exerts the best flame-retarded effect and highest residual weight of 36.3% at 700 °C, which has 57.6% reduction in flame spread rate and 23.9% reduction in total heat release compared to those of MPPB0 without PEG-BA. Accelerated ageing test shows that low molecular weight of PEG-BA promotes to enhance the durability of structural stability and fire resistance of the coatings, while PEG800-BA with high molecular weight weakens the ageing resistance. In summary, the fire-resistant and anti-ageing efficiencies of PEG-BA in the coatings depend on its molecular weight, which present the order of PEG200-BA > PEG400-BA > PEG600-BA > PEG800-BA.


1980 ◽  
Vol 30 (3) ◽  
pp. 642-648
Author(s):  
J. T. Poolman ◽  
S. De Marie ◽  
H. C. Zanen

Analysis of major outer membrane protein (MOMP) profiles of various meningococci by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (SDS-PAGE) revealed the presence of 0 to 2 low-molecular-weight, heat-modifiable MOMPs (molecular weight, 25,000 to 32,000) and 1 to 3 high-molecular-weight MOMPs (molecular weight, 32,000 to 46,000). Heat modifiability was investigated by comparing MOMP profiles after heating in SDS solutions at 100°C for 5 min or at 40°C for 1 h. Low-molecular-weight MOMPs shifted to higher apparent molecular weights after being heated at 100°C. Heat modifiability of high-molecular-weight MOMPs varied among strains; whenever modified these proteins shifted to lower apparent molecular weights after complete denaturation. Variability of low-molecular-weight, heat-modifiable MOMPs was demonstrated when MOMP profiles were compared of (i) isolates from index cases and associated cases and carriers among contacts, (ii) different isolates from the same individual, and (iii) isolates from a small epidemic caused by serogroup W-135. In some cases high-molecular-weight MOMPs revealed quantitative differences among related strains. The observed variability and quantitative differences indicate that MOMP serotyping and typing on the basis of SDS-PAGE profiles (PAGE typing) need careful reevaluation.


Sign in / Sign up

Export Citation Format

Share Document