scholarly journals The kinetics of oxygen exchange between the sulfite ion and water

1970 ◽  
Vol 48 (13) ◽  
pp. 2035-2041 ◽  
Author(s):  
R. H. Betts ◽  
R. H. Voss

Oxygen of mass 18 was used as a stable tracer to measure the rate of exchange between the sulfite ion and water as a function of pH and total sulfite concentration. A value for the rate constant of hydration of SO2 in aqueous solution was determined. The gross rate constants k1 and k−1 for the overall reaction[Formula: see text]at 24.7 °C and ionic strength = 0.9 were evaluated from exchange results to be [Formula: see text]Also, for the first time, rate constants for the pyrosulfite equilibrium[Formula: see text]Were obtained[Formula: see text]at 24.7 °C and ionic strength = 0.9


1969 ◽  
Vol 47 (20) ◽  
pp. 3773-3778 ◽  
Author(s):  
M. L. Sanduja ◽  
W. MacF. Smith

The kinetics of formation of the monophenanthroline complex of nickel(II) has been studied spectrophotometrically in water–methanol mixtures of 0 to 97 weight % of methanol, at ionic strength 0.050, at varying acidities at 25 °C. Values for the rate constants for the acid independent and acid dependent reactions together with values for the equilibrium acid ionization quotient of phenanthrolium ion over the range of solvent mixtures have been determined. The values of the acid independent rate constant show little dependence on solvent compositions up to 76% methanol, then decrease and show no correlation with trends in the ionization quotient of phenanthrolium ion. The acid dependent rate constant shows only a modest dependence on solvent composition over most of the range of solvent compositions except in the range of highest methanol content where it is not significantly different from zero.



1974 ◽  
Vol 52 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Erwin Buncel ◽  
Albert Richard Norris ◽  
Kenneth Edwin Russell ◽  
Peter Jura Sheridan

The kinetics of the reactions between sulfite ion and picramide, N-methylpicramide, and N,N-dimethylpicramide, to form 1:1 σ-complexes in aqueous solutions of constant ionic strength 0.14 M, have been investigated using a stopped-flow spectrophotometer. Specific rate constants for the formation and decomposition of these three complexes at 25.0 °C are 5.7 ± 0.2 × 104M−1 s−1 and 7 ± 1 s−1, 1.4 ± 0.1 × 104M−1 s−1 and 0.20 ± 0.02 s−1, and 4.1 ± 0.2 × 103M−1 s−1 and 0.14 ± 0.04 s−1, respectively. Enthalpies and entropies of activation characterizing the formation of the 1:1 σ-complexes have been determined. Equilibrium constants, determined spectrophotometrically at a number of temperatures, have been used to calculate the enthalpy (ΔH0) and entropy (ΔS0) changes associated with 1:1 and 2:1 σ-complex formation. These values are compared with corresponding ones for complex formation of sulfite ion with 1,3,5-trinitrobenzene and 2,4,6-trinitrobenzaldehyde. The extent of solvation of the σ-complexes is considered to play a primary role in determining the observed trends in the enthalpies and entropies of reaction.



1981 ◽  
Vol 46 (5) ◽  
pp. 1229-1236 ◽  
Author(s):  
Jan Balej ◽  
Milada Thumová

The rate of hydrolysis of S2O82- ions in acidic medium to peroxomonosulphuric acid was measured at 20 and 30 °C. The composition of the starting solution corresponded to the anolyte flowing out from an electrolyser for production of this acid or its ammonium salt at various degrees of conversion and starting molar ratios of sulphuric acid to ammonium sulphate. The measured data served to calculate the rate constants at both temperatures on the basis of the earlier proposed mechanism of the hydrolysis, and their dependence on the ionic strength was studied.



2003 ◽  
Vol 07 (03) ◽  
pp. 139-146 ◽  
Author(s):  
Peter Hambright ◽  
Ines Batinić-Haberle ◽  
Ivan Spasojević

The relative reactivities of the tetrakis( N -alkylpyridinium- X - yl )-porphyrins where X = 4 (alkyl = methyl, ethyl, n -propyl) , X = 3 (methyl) , and X = 2 (methyl, ethyl, n -propyl, n -butyl, n -hexyl, n -octyl) were studied in aqueous solution. From the ionic strength dependence of the metalation rate constants, the effective charge of a particular cationic porphyrin was usually larger when copper(II) rather than zinc(II) was the reactant. The kinetics of ZnOH + incorporation and the acid catalyzed removal of zinc from the porphyrins in 1.0 M HCl were also studied. In general, the more basic 4- (para-) and 3- (meta-) isomers were the most reactive, followed by the less basic 2- (ortho-) methyl to n -butyl derivatives, with the lipophilic ortho n -hexyl and n -octyl porphyrins the least reactive.



1979 ◽  
Vol 32 (9) ◽  
pp. 1905 ◽  
Author(s):  
AF Godfrey ◽  
JK Beattie

The oxidation of butan-1-ol by ferricyanide ion in alkaline aqueous solution is catalysed by solutions of ruthenium trichloride hydrate. The kinetics of the reaction has been reinvestigated and the data are consistent with the rate law -d[FeIII]/dt = [Ru](2k1k2 [BuOH] [FeIII])/(2k1 [BuOH]+k2 [FeIII]) This rate law is interpreted by a mechanism involving oxidation of butanol by the catalyst (k1) followed by reoxidation of the catalyst by ferricyanide (k2). The non-linear dependence of the rate on the butanol concentration is ascribed to the rate-determining, butanol-independent reoxidation of the catalyst, rather than to the saturation of complex formation between butanol and the catalyst as previously claimed. Absolute values of the rate constants could not be determined, because some of the ruthenium precipitates from basic solution. With K3RuCl6 as the source of a homogeneous catalyst solution, estimates were obtained at 30�0�C of k1 = 191. mol-1 s-1 and k2 = 1�4 × 103 l. mol-1 s-1.



RSC Advances ◽  
2015 ◽  
Vol 5 (34) ◽  
pp. 26559-26568 ◽  
Author(s):  
Angappan Mano Priya ◽  
Gisèle El Dib ◽  
Lakshmipathi Senthilkumar ◽  
Chantal Sleiman ◽  
Alexandre Tomas ◽  
...  

Absolute experimental and theoretical rate constants are determined for the first time for the reaction of 3-hydroxy-3-methyl-2-butanone with OH as a function of temperature. The atmospheric implications are discussed.



2010 ◽  
Vol 2 (2) ◽  
pp. 107-112
Author(s):  
Nuryono Nuryono ◽  
Narsito Narsito

In this research, treatment of diatomaceous earth, Sangiran, Central Java using hydrogen chloride (HCl) and sulfuric acid (H2SO4) on kinetics of Cd(II) adsorption in aqueous solution has been carried out. The work was conducted by mixing an amount of grounded diatomaceous earth (200 mesh in size) with HCl or H2SO4 solution in various concentrations for two hours at temperature range of 100 - 150oC. The mixture was then filtered and washed with water until the filtrate pH is approximately 7 and then the residue was dried for four hours at a temperature of 70oC. The product was used as an adsorbent to adsorb Cd(II) in aqueous solution with various concentrations. The Cd(II) adsorbed was determined by analyzing the rest of Cd(II) in the solution using atomic absorption spectrophotometry. The effect of treatment was evaluated from kinetic parameter of adsorption rate constant calculated based on the simple kinetic model. Results showed  that before equilibrium condition reached, adsorpstion of Cd(II) occurred through two steps, i.e. a step tends to follow a reaction of irreversible first order  (step I) followed by reaction of reversible first order (step II). Treatment with acids, either hydrogen chloride or sulfuric acid, decreased adsorption rate constant for the step I from 15.2/min to a range of 6.4 - 9.4/min.  However, increasing concentration of acid (in a range of concentration investigated) did not give significant and constant change of adsorption rate constant. For step II process,  adsorption involved physical interaction with the sufficient low adsorption energy (in a range of 311.3 - 1001 J/mol).     Keywords: adsorption, cdmium, diatomaceous earth, kinetics.



2009 ◽  
Vol 74 (10) ◽  
pp. 1531-1542 ◽  
Author(s):  
Vlado Cuculić ◽  
Ivanka Pižeta

The kinetics of iron(III) hydrolysis and precipitation in aqueous glycine solutions were studied by cathodic voltammetry with a mercury drop electrode. The kinetics was controlled by changing ionic strength (I), pH and glycine concentration. Voltammetric measurements clearly showed formation and dissociation of a soluble Fe(III)–glycine complex, formation of iron(III) hydroxide and its precipitation. The rate constants of iron(III) hydroxide precipitation were assessed. The precipitation is first-order with respect to dissolved inorganic iron(III). The calculated rate constants of iron(III) precipitation varied from 0.18 × 10–5 s–1 (at 0.2 M total glycine, pH 7.30, I = 0.6 mol dm–3) to 2.22 × 10–3 s–1 (at 0.1 M total glycine, pH 7.30, I = 0.2 mol dm–3). At 0.5 M total glycine and I = 0.6 mol dm–3, the iron(III) precipitation was not observed.



1982 ◽  
Vol 76 (2) ◽  
pp. 984-996 ◽  
Author(s):  
Mei Hsu Dung ◽  
John J. Kozak


1968 ◽  
Vol 2 (9) ◽  
pp. 234-243 ◽  
Author(s):  
Inga Christenson

The products and kinetics of hydrolysis of the nerve gas antidote bis(4-hydroxyiminomethyl - 1 - pyridinemethyl) ether dichloride (Toxogonin ®) have been investigated. A survey of these studies is given: The hydrolytic reactions were studied in the pH range 1 M hydrochloric acid to 1 M sodium hydroxide at 25, 45, 75 and 85° C. Rate constants were determined in dilute aqueous solution, generally with an initial Toxogonin concentration of 0.01 mg per ml. In addition, a report is given concerning two-year storage of 25 percent (w/v) Toxogonin solutions at pH 2.5, 3.0 and 3.5. The solutions were stored in glass or polypropylene ampuls at 5, 15, 25 and 45°C. At 5 and 15C° decomposition was negligible, at 25 and 45 °C average decomposition was 1.5 percent and 3.3 percent, respectively.



Sign in / Sign up

Export Citation Format

Share Document