Kinetic and Thermodynamic Studies of the Reactions of Sulfite Ion with Picramide, N-Methylpicramide, and N,N-Dimethylpicramide in Aqueous Solution

1974 ◽  
Vol 52 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Erwin Buncel ◽  
Albert Richard Norris ◽  
Kenneth Edwin Russell ◽  
Peter Jura Sheridan

The kinetics of the reactions between sulfite ion and picramide, N-methylpicramide, and N,N-dimethylpicramide, to form 1:1 σ-complexes in aqueous solutions of constant ionic strength 0.14 M, have been investigated using a stopped-flow spectrophotometer. Specific rate constants for the formation and decomposition of these three complexes at 25.0 °C are 5.7 ± 0.2 × 104M−1 s−1 and 7 ± 1 s−1, 1.4 ± 0.1 × 104M−1 s−1 and 0.20 ± 0.02 s−1, and 4.1 ± 0.2 × 103M−1 s−1 and 0.14 ± 0.04 s−1, respectively. Enthalpies and entropies of activation characterizing the formation of the 1:1 σ-complexes have been determined. Equilibrium constants, determined spectrophotometrically at a number of temperatures, have been used to calculate the enthalpy (ΔH0) and entropy (ΔS0) changes associated with 1:1 and 2:1 σ-complex formation. These values are compared with corresponding ones for complex formation of sulfite ion with 1,3,5-trinitrobenzene and 2,4,6-trinitrobenzaldehyde. The extent of solvation of the σ-complexes is considered to play a primary role in determining the observed trends in the enthalpies and entropies of reaction.

1975 ◽  
Vol 53 (20) ◽  
pp. 2979-2984 ◽  
Author(s):  
Cooper H. Langford ◽  
Tahir R. Khan

The first report of a rate of binding of a metal ion (Fe3+) by a soluble fulvic acid is derived from stopped flow measurements. The rate of complex formation is normal in Wilkins' sense and similar to that for sulfosalicylic acid. Dissociation is slow (t1/2 > 10 s). The binding of Fe3+ by the fulvic acid in acid solution, pH = 1–2.5, was investigated by kinetic analysis in which the reaction of free Fe3+ with sulfosalicylic acid was followed by stopped flow spectrophotometry on a time scale short compared to release of Fe3+ by fulvic acid. Conditional equilibrium constants found were 1.5 ± 0.3 × 104 at pH = 1.5 and 2.5, and 2.8 ± 0.3 × 103 at pH = 1.0 at 25 °C (ionic strength 0.1).


1970 ◽  
Vol 48 (13) ◽  
pp. 2035-2041 ◽  
Author(s):  
R. H. Betts ◽  
R. H. Voss

Oxygen of mass 18 was used as a stable tracer to measure the rate of exchange between the sulfite ion and water as a function of pH and total sulfite concentration. A value for the rate constant of hydration of SO2 in aqueous solution was determined. The gross rate constants k1 and k−1 for the overall reaction[Formula: see text]at 24.7 °C and ionic strength = 0.9 were evaluated from exchange results to be [Formula: see text]Also, for the first time, rate constants for the pyrosulfite equilibrium[Formula: see text]Were obtained[Formula: see text]at 24.7 °C and ionic strength = 0.9


2003 ◽  
Vol 07 (03) ◽  
pp. 139-146 ◽  
Author(s):  
Peter Hambright ◽  
Ines Batinić-Haberle ◽  
Ivan Spasojević

The relative reactivities of the tetrakis( N -alkylpyridinium- X - yl )-porphyrins where X = 4 (alkyl = methyl, ethyl, n -propyl) , X = 3 (methyl) , and X = 2 (methyl, ethyl, n -propyl, n -butyl, n -hexyl, n -octyl) were studied in aqueous solution. From the ionic strength dependence of the metalation rate constants, the effective charge of a particular cationic porphyrin was usually larger when copper(II) rather than zinc(II) was the reactant. The kinetics of ZnOH + incorporation and the acid catalyzed removal of zinc from the porphyrins in 1.0 M HCl were also studied. In general, the more basic 4- (para-) and 3- (meta-) isomers were the most reactive, followed by the less basic 2- (ortho-) methyl to n -butyl derivatives, with the lipophilic ortho n -hexyl and n -octyl porphyrins the least reactive.


1979 ◽  
Vol 32 (9) ◽  
pp. 1905 ◽  
Author(s):  
AF Godfrey ◽  
JK Beattie

The oxidation of butan-1-ol by ferricyanide ion in alkaline aqueous solution is catalysed by solutions of ruthenium trichloride hydrate. The kinetics of the reaction has been reinvestigated and the data are consistent with the rate law -d[FeIII]/dt = [Ru](2k1k2 [BuOH] [FeIII])/(2k1 [BuOH]+k2 [FeIII]) This rate law is interpreted by a mechanism involving oxidation of butanol by the catalyst (k1) followed by reoxidation of the catalyst by ferricyanide (k2). The non-linear dependence of the rate on the butanol concentration is ascribed to the rate-determining, butanol-independent reoxidation of the catalyst, rather than to the saturation of complex formation between butanol and the catalyst as previously claimed. Absolute values of the rate constants could not be determined, because some of the ruthenium precipitates from basic solution. With K3RuCl6 as the source of a homogeneous catalyst solution, estimates were obtained at 30�0�C of k1 = 191. mol-1 s-1 and k2 = 1�4 × 103 l. mol-1 s-1.


1966 ◽  
Vol 19 (8) ◽  
pp. 1365 ◽  
Author(s):  
RH Smith ◽  
IR Wilson

Initial rates of reaction for the above oxidation have been measured by a stopped-flow conductance method. Between pH 2 and 3.6, the initial rate of reaction, R, is given by the expression R{[HSO5-]+[SCN-]} = {kb+kc[H+]}[HSO5-]0[SCN-]20+ka[H+]-1[HSO5]20[SCN-]0 As pH increases, there is a transition to a pH-independent rate, first order in each thiocyanate and peroxomonosulphate concentrations.


1974 ◽  
Vol 52 (1) ◽  
pp. 8-17 ◽  
Author(s):  
Leong Huat Gan ◽  
Albert Richard Norris

Equilibrium constants for the formation of 1:1 cyanide ion σ-complexes with 1,3,5-trinitrobenzene, 2,4,6-trinitroanisole, and 2,4,6-trinitrotoluene have been determined spectrophotometrically over a range of temperatures. Standard enthalpy (ΔH0) and entropy (ΔS0) changes associated with each reaction have been evaluated. The kinetics of formation of the σ-complexes have been investigated by means of a stopped-flow technique and the activation parameters characterizing the formation of each complex have been determined. Evidence is presented which indicates the cyanide ion – 2,4,6-trinitroanisole σ-complex formed in isopropanol contains the cyanide ion bonded exclusively at the C-3 position.


1974 ◽  
Vol 29 (1) ◽  
pp. 141-144
Author(s):  
T. S. Rao ◽  
S. I. Mali

The kinetics of the reaction between has been studied under conditions of production of iodine at a known rate by the persulfate-iodide reaction and its consumption by S2O3-- . The effective concentration of iodine during the steady state is measured from its reduction potential at a bright platinum foil electrode. The reaction is of first order with respect to I3- and S2O3-- individually and hence of over all second order. The specific rate is 1.51 X 105 M -1 sec-1 and the frequency factor is 1.69 × 1012 M -1 sec-1 at 25 °C. The energy of activation for the reaction is 9.58 × 103 cal/mole and the entropy of activation is -2.55 cal/mole deg.


1962 ◽  
Vol 40 (3) ◽  
pp. 363-372 ◽  
Author(s):  
R. W. Burley ◽  
W. H. Cook

The effect of pH, temperature, ionic strength, and lipoprotein concentration on the reversible dissociation of α- and β-lipovitellin in aqueous solutions above pH 6 has been examined by ultracentrifugal measurements. Under otherwise similar conditions α- and β-lipovitellin are 50% dissociated at pH 10.5 and 7.8, respectively. Both lipovitellins undergo an irreversible aggregation above about pH 11; β-lipovitellin is sometimes converted to a non-dissociable form upon aging. Dissociation of both lipovitellins decreases with increasing ionic strength and increasing temperature. Although the ultracentrifugal method has limitations, provisional equilibrium constants and thermodynamic data were obtained from it that are comparable with those obtained for certain protein systems.


Sign in / Sign up

Export Citation Format

Share Document