Bacterial diversity associated with ornithogenic soil of the Ross Sea region, AntarcticaThis article is one of a selection of papers in the Special Issue on Polar and Alpine Microbiology.

2009 ◽  
Vol 55 (1) ◽  
pp. 21-36 ◽  
Author(s):  
J. Aislabie ◽  
S. Jordan ◽  
J. Ayton ◽  
J. L. Klassen ◽  
G. M. Barker ◽  
...  

In the Ross Sea region of Antarctica, ornithogenic soils form on land under Adélie Penguin rookeries. Compared with mineral soils of the Ross Sea region, ornithogenic soils are generally high in microbial biomass, organic carbon, and total nitrogen and phosphorus, with high electrical conductivity and large variations in pH. The objective of this study was to assess the bacterial composition of ornithogenic soils from Cape Hallett and Cape Bird in the Ross Sea region using culture-independent methods. Soil clone libraries were constructed and those clones that occurred ≥3 times were sequenced. The bacterial diversity of the soils was dependent on the presence of penguins. Firmicutes most closely related to the endospore-formers (e.g., Oceanobacillus profundus and Clostridium acidurici ) and (or) Gammaproteobacteria belonging to the genus Psychrobacter dominated soils currently occupied with penguins. In contrast, Gammaproteobacteria, closely related to cultured members of the genera Rhodanobacter , Psychrobacter , Dokdonella , and Lysobacter , dominated the soils previously colonized by penguins. Results of this study indicate that despite relatively high nutrient levels and microbial biomass, bacterial communities of ornithogenic soils were not more diverse than those of mineral soils of the Ross Sea region of Antarctica.

2016 ◽  
Vol 73 (11) ◽  
pp. 2722-2730 ◽  
Author(s):  
Li Dong ◽  
Luo Yahong ◽  
Cai Yanan ◽  
Zeng Huiping ◽  
Zhang Jie

A novel post intermittent aeration anaerobic–anoxic–oxic (PIA-A2/O) process was developed to integrate shortcut nitrification–denitrification with denitrifying phosphorus (P) removal for domestic sewage treatment. With the transformation in configuration and phased start-up strategy, the nitritation rate and the ratio of denitrifying phosphorus accumulating organisms to phosphorus accumulating organisms (DPAO/PAO) were enhanced greatly to 88.2% and 83.9–91.7% in the PIA-A2/O process, respectively. Improved total nitrogen and phosphorus removal were achieved at long sludge retention time and low aeration. High sludge activity was maintained through the periodic selection of the additional intermittent aeration zone. High-throughput sequencing revealed that Bacteroidetes (38.96%), Proteobacteria (33.59%), TM7 (4.53%), Chloroflexi (3.09%), and Firmicutes (2.49%) were the dominant phyla in the resultant bacterial community. Abundant anaerobic and facultative bacteria conducive to excess sludge reduction were generated by this process. Potential DPAOs involve the genera of Brevundimonas, Brachymonas, Steroidobacter, Haliscomenobacter, and Rhodocyclus.


2021 ◽  
Author(s):  
Shangdong Yang ◽  
Jian Xiao ◽  
Ziyue Huang ◽  
Renliu Qin ◽  
Weizhong He ◽  
...  

Abstract Aims Sugarcane intercropping with soybean (Glycine max (Linn.) Merr.), mung bean (Vignaradiata (Linn.) Wilczek) and peanut (Arachishypogaea Linn.) as well as a sugarcane monoculture were conducted to study the impacts of intercropping on soil biological characteristics and bacterial diversity. Methods The soil samples were collected from twelve random sites and mixed well at the experimental farm of the Guangxi South Sub-tropical Agricultural Science Research Institute, Longzhou, China. Traditional analysis methods and modern high-throughput sequencing technology was used to compare and analyze the soil enzyme activity, microbial biomass, soil cultivable microorganisms and other biological traits and bacterial diversity.Results The results showed that soil cultivable microorganisms, the activities of soil enzymes and microbial biomass carbon, nitrogen, and phosphorus were all significantly improved by intercropping with soybean and mung bean. Additionally, soil bacterial diversity and richness in sugarcane fields were also significantly enhanced by intercropping with soybean and mung bean. In addition, soil bacterial community structures in sugarcane fields can be altered by intercropping with different legumes. Proteobacteria, a high-nutrient-tolerant bacterial assemblage, became the dominant bacteria in the sugarcane-soybean and sugarcane-mung bean intercropped soils. Twenty four, 28, 26 and 27 dominant soil bacterial genera were found after the sugarcane-soybean, sugarcane-mung bean, sugarcane-peanut and sugarcane monoculture treatments, respectively.Conclusions Sugarcane-mung bean intercropping suggested to be the most promising system for regaining and improving soil fertility and soil heath and facilitate agriculture intensification of sugarcane.


2012 ◽  
Vol 50 (6) ◽  
pp. 1081-1085 ◽  
Author(s):  
Ok-Sun Kim ◽  
Namyi Chae ◽  
Hyun Soo Lim ◽  
Ahnna Cho ◽  
Jeong Hoon Kim ◽  
...  

2020 ◽  
Vol 85 ◽  
pp. 47-58
Author(s):  
Y Jiang ◽  
Y Liu

Various studies have observed that increased nutrient supply promotes the growth of bloom-forming cyanobacteria, but only a limited number of studies have investigated the influence of increased nutrient supply on bloom-forming cyanobacteria at the proteomic level. We investigated the cellular and proteomic responses of Microcystis aeruginosa to elevated nitrogen and phosphorus supply. Increased supply of both nutrients significantly promoted the growth of M. aeruginosa and the synthesis of chlorophyll a, protein, and microcystins. The release of microcystins and the synthesis of polysaccharides negatively correlated with the growth of M. aeruginosa under high nutrient levels. Overexpressed proteins related to photosynthesis, and amino acid synthesis, were responsible for the stimulatory effects of increased nutrient supply in M. aeruginosa. Increased nitrogen supply directly promoted cyanobacterial growth by inducing the overexpression of the cell division regulatory protein FtsZ. NtcA, that regulates gene transcription related to both nitrogen assimilation and microcystin synthesis, was overexpressed under the high nitrogen condition, which consequently induced overexpression of 2 microcystin synthetases (McyC and McyF) and promoted microcystin synthesis. Elevated nitrogen supply induced the overexpression of proteins involved in gas vesicle organization (GvpC and GvpW), which may increase the buoyancy of M. aeruginosa. Increased phosphorus level indirectly affected growth and the synthesis of cellular substances in M. aeruginosa through the mediation of differentially expressed proteins related to carbon and phosphorus metabolism. This study provides a comprehensive description of changes in the proteome of M. aeruginosa in response to an increased supply of 2 key nutrients.


2021 ◽  
Vol 9 (3) ◽  
pp. 503
Author(s):  
Michael Bording-Jorgensen ◽  
Hannah Tyrrell ◽  
Colin Lloyd ◽  
Linda Chui

Acute gastroenteritis caused by Shiga toxin-producing Escherichia coli (STEC) affects more than 4 million individuals in Canada. Diagnostic laboratories are shifting towards culture-independent diagnostic testing; however, recovery of STEC remains an important aspect of surveillance programs. The objective of this study was to compare common broth media used for the enrichment of STEC. Clinical isolates including O157:H7 as well as non-O157 serotypes were cultured in tryptic soy (TSB), MacConkey (Mac), and Gram-negative (GN) broths and growth was compared using culture on sheep’s blood agar and real-time PCR (qPCR). In addition, a selection of the same isolates was spiked into negative stool and enriched in the same three broths, which were then evaluated using culture on CHROMagarTM STEC agar and qPCR. TSB was found to provide the optimal enrichment for growth of isolates with and without stool. The results from this study suggest that diagnostic laboratories may benefit from enriching STEC samples in TSB as a first line enrichment instead of GN or Mac.


2013 ◽  
Vol 798-799 ◽  
pp. 1139-1143
Author(s):  
Chao Wang ◽  
Shuai Cheng ◽  
Pei Fang Wang ◽  
Yan Yan Ma

The relationship between microbial biomass and enzyme activities under heavy metal pollution had attracted much attention in ecology. The experimental sediment samples were supplemented with Pb and Cr and incubated at room temperature for a month. Microbial properties such as microbial biomass, urease, catalase and cellulase activities, together with several chemical properties such as pH, total organic carbon , oxidation-reduction potential, total nitrogen and phosphorus were measured to evaluate changes in sediment qualities. Our results demonstrate that heavy metals would inhibit sediment microbe biomass and enzyme activities. Such decreases in sediments microbial biomass and enzyme activities by Pb and Cr contamination may help to evaluate heavy metals contaminated soil ecologies.


2019 ◽  
Vol 2 (3) ◽  
pp. 241-253 ◽  
Author(s):  
Mingma Thundu Sherpa ◽  
Ishfaq Nabi Najar ◽  
Sayak Das ◽  
Nagendra Thakur

mSphere ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Shinya Kageyama ◽  
Mikari Asakawa ◽  
Toru Takeshita ◽  
Yukari Ihara ◽  
Shunsuke Kanno ◽  
...  

ABSTRACTNewborns are constantly exposed to various microbes from birth; hence, diverse commensal bacteria colonize the oral cavity. However, how or when these bacteria construct a complex and stable ecosystem remains unclear. This prospective cohort study examined the temporal changes in bacterial diversity and composition in tongue microbiota during infancy. We longitudinally collected a total of 464 tongue swab samples from 8 infants (age of <6 months at baseline) for approximately 2 years. We also collected samples from 32 children (aged 0 to 2 years) and 73 adults (aged 20 to 29 years) cross-sectionally as control groups. Bacterial diversities and compositions were determined by 16S rRNA gene sequencing. The tongue bacterial diversity in infancy, measured as the number of observed operational taxonomic units (OTUs), rapidly increased and nearly reached the same level as that in adults by around 80 weeks. The overall tongue bacterial composition in the transitional phase, 80 to 120 weeks, was more similar to that of adults than to that of the early exponential phase (EEP), 10 to 29 weeks, according to analysis of similarities. Dominant OTUs in the EEP corresponding toStreptococcus perorisandStreptococcus lactariusexponentially decreased immediately after EEP, around 30 to 49 weeks, whereas several OTUs corresponding toGranulicatella adiacens,Actinomyces odontolyticus, andFusobacterium periodonticumreciprocally increased during the same period. These results suggest that a drastic compositional shift of tongue microbiota occurs before the age of 1 year, and then bacterial diversity and overall bacterial composition reach levels comparable to those in adults by the age of 2 years.IMPORTANCEEvaluating the development of oral microbiota during infancy is important for understanding the subsequent colonization of bacterial species and the process of formation of mature microbiota in the oral cavity. We examined tongue microbiota longitudinally collected from 8 infants and found that drastic compositional shifts in tongue microbiota occur before the age of 1 year, and then bacterial diversity and overall bacterial composition reach levels comparable to those in adults by the age of 2 years. These results may be helpful for preventing the development of various diseases associated with oral microbiota throughout life.


Sign in / Sign up

Export Citation Format

Share Document