Carbon and nitrogen distribution and accumulation in a New Zealand scrubland ecosystem

2000 ◽  
Vol 30 (8) ◽  
pp. 1246-1255 ◽  
Author(s):  
Neal A Scott ◽  
Joseph D White ◽  
Jackie A Townsend ◽  
David Whitehead ◽  
John R Leathwick ◽  
...  

Reversion of agricultural land to native woody vegetation can sequester carbon (C), influencing regional and global C budgets. We examined whole-ecosystem differences in C and nitrogen (N) storage and distribution, and sapwood - leaf area relationships in a scrubland vegetation chronosequence in New Zealand dominated by manuka (Leptospermum scoparium J.R. et G. Forst) and kanuka (Kunzea ericoides var. ericoides (A. Rich.) J. Thompson). At 25 years, manuka dominated, and vegetation C was 6.5 kg C·m-2. In the 55-year-old stand, stem density was similar for the two species, and vegetation C storage was 15.1 kg C·m-2, similar to the 35-year-old stand (p = 0.9). Foliar biomass comprised 3-5% of vegetation C stock but contained 26%-37% of vegetation N. Root biomass was 10-15% of total and varied little with stand age. The sapwood - leaf area relationship differed significantly for the two species (p < 0.05). Mineral soil C and N (to 0.30 m) did not vary with stand age, but forest floor C and N were highest in the 55-year-old stand (2 kg C·m-2; p < 0.01). Soil and forest floor C/N ratios were significantly higher in the 35-year-old stand (p < 0.04), possibly because of high interspecific competition for N. While the sampling intensity was too limited to allow spatial extrapolation, our results suggest that carbon accumulation in this scrubland is rapid and similar to plantation forests, suggesting that land abandonment could significantly impact New Zealand's C budget.


2004 ◽  
Vol 34 (3) ◽  
pp. 509-518 ◽  
Author(s):  
J Bauhus ◽  
T Vor ◽  
N Bartsch ◽  
A Cowling

Despite the importance of gaps in the dynamics and management of many forest types, very little is known about the medium- to long-term soil C and N dynamics associated with this disturbance. This study was designed to test the hypothesis that gap creation and lime application, a routine measure in many European forests to ameliorate soil acidity, lead to accelerated litter decomposition and thus a reduction in the forest floor and soil C and N pools. Four gaps were created in 1989 in a mature European beech (Fagus sylvatica L.) forest on acid soil with a moder humus, and lime (3 t dolomite·ha–1) was applied to two of these and surrounding areas. Litter and fine-root decomposition was measured in 1992–1993 and 1996–1998 using litterbags. Forest floor (L, F, and H layers) and mineral soil (0–40 cm) C and N pools were determined in 1989 and 1997. Eight years following silvicultural treatments, there was no change in C and N over the entire forest soil profile including forest floor. Reductions in the F and H layers in limed gaps were compensated for by increases in soil C and N in the surface (0–10 cm) mineral soil. Decomposition of F litter was significantly accelerated in limed gaps, leading to the development of a mull–moder, whereas gap creation alone had no effect on mass loss of F material in litterbags. Gap size disturbances in this acid beech forest appear to have minimal influences on soil C and N stocks. However, when combined with liming, changes in the humus form and vertical distribution of soil C and N may occur.



2016 ◽  
Vol 46 (12) ◽  
pp. 1459-1473 ◽  
Author(s):  
Line Tau Strand ◽  
Ingeborg Callesen ◽  
Lise Dalsgaard ◽  
Heleen A. de Wit

Relationships between soil C and N stocks and soil formation, climate, and vegetation were investigated in a gridded database connected to the National Forest Inventory in Norway. For mineral soil orders, C and N stocks were estimated to be 11.1–19.3 kg C·m−2 and 0.41–0.78 kg N·m−2, respectively, declining in the following order: Gleysols > Podzols > Brunisols > Regosols. Organic peat-type soils stored, on average, 31.3 kg C·m−2 and 1.10 kg N·m−2, whereas shallow Organic folisols stored, on average, 10.2 kg C·m−2 and 0.34 kg N·m−2. For Norway’s 120 000 km2 of forest, the total of soil C stocks was estimated to be 1.83 Gt C, with a 95% CI of 1.71–1.95 Gt C. Podzolic soils comprise the largest soil group and store approximately 50% of the forest soil C. Sixty percent of the soil C stock in Podzolic soils was stored in the mineral soil, increasing with temperature and precipitation. Poorly drained soil types store approximately 47% of the total forest soil C in Norway. Soils with water saturation have large C stocks mainly in the forest floor, suggesting that they are more susceptible to forest management and environmental change. Soil C stocks under pine and spruce forests were similar, although pine forests had larger C stocks in the forest floor, while spruce forests had the highest C stocks in the mineral soil compartment. C stocks in the forest floor increase from dry to moist ground vegetation, while ground vegetation nutrient classes reflect better the C and N stocks in the mineral soil.



2014 ◽  
Vol 9 (No. 4) ◽  
pp. 192-200 ◽  
Author(s):  
O. Holubík ◽  
V. Podrázský ◽  
J. Vopravil ◽  
T. Khel ◽  
J. Remeš

Forests occupy one third of the world&rsquo;s land area and govern carbon (C) transfers and influence nitrogen (N) content in the biosphere. Afforestation leads to soil changes of specific dynamics, often accompanied by acidification. Especially at higher altitudes this effect is accelerated and increased with the stand age since forestation. The change in soil C and N content following afforestation is controlled by a number of factors, including: previous land use (grasslands, cropland, etc.), tree species, soil cultivation method, soil properties (clay content, pH), stand age, site management, topography, and climate. In the Czech Republic, large area changes in land use took place in the last centuries &ndash; forests covering roughly 20% in the 18<sup>th</sup> century currently occupy almost 34%, with still increasing tendencies. This paper compares basic soil properties (soil reaction, total soil organic carbon as well as total nitrogen contents) of the agricultural land and land afforested 40&ndash;60 years ago. The results confirmed the key role of afforestation in the change of soil organic matter dynamics after establishing new forests on the former agricultural lands in the uppermost mineral soil part of the Orlick&eacute; hory Mts. region in the Czech Republic. During that time, comparatively substantial changes in soil organic matter and nitrogen were registered. Afforestation considerably increased organic matter content in the studied A-horizons of different land use types. Soil development resulted in a high production of C and N pools under the forest stands, contrary to agricultural land. In general, afforestation caused significant soil acidification. The common tendency of higher acidity of forest soils compared to agricultural ones was documented in the studied case as well. The general tendencies of soil reaction and soil organic matter dynamics at the studied sites are comparable to those in other regions of the Czech Republic.



Soil Research ◽  
2002 ◽  
Vol 40 (4) ◽  
pp. 675 ◽  
Author(s):  
M. R. Davis ◽  
L. M. Condron

Afforestation of grassland provides an opportunity for partial mitigation of increasing carbon dioxide (CO2) levels in the atmosphere through carbon (C) fixation in biomass, but little is known of the impact of afforestation on soil C. To determine the impact of afforestation on soil C levels, data from published papers, theses, and unpublished studies of paired adjoining grassland and afforested sites in New Zealand were assembled and compared. The forest sites within each pair were planted into grassland rather than some other land use, and were a minimum of 10 years old. A total of 28 paired sites had information on both mineral soil C concentration and bulk density, 17 with the forest part of the pair aged 10-20 years, and 11 with the forest aged more than 20 years. Forest floor C information was available for 9 sites. Only 3 of the forest stands had been harvested. Results indicated that afforestation of grassland soils reduces upper mineral soil (mainly 0-10 cm layer) C levels by about 4.5 t/ha or 9.5% in the short-term; however, beyond forest age 20 years there was no difference mineral in soil C between the two systems. Soil bulk density in the 0-10 cm layer was unaffected by afforestation during the first rotation. This allowed comparison of a larger number of sites (27 with forest aged 10-20 years, 18 with forest aged &gt;20 years) that had C concentration data only. Analysis of this larger data set confirmed results obtained from the C mass data alone. Effects of afforestation on mineral soil C were most pronounced in the upper soil and declined rapidly with depth to the extent that at most sites there was no influence of afforestation on soil C below the 0-10 cm layer. At some sites, however, the impact of afforestation proceeded to greater depths, and further study is required to determine reasons for differences between sites in this regard. The impacts of afforestation on soil C observed from the paired-site studies agree well with those of recent analyses for the upper soil layer using New Zealand national soils databases. At greater depths, however, analyses using the databases appear to greatly overestimate the influence of afforestation on soil C. The available data indicate that C accumulating in the forest floor is likely to exceed any short-term reduction in mineral soil C arising from grassland afforestation.



1995 ◽  
Vol 25 (8) ◽  
pp. 1385-1396 ◽  
Author(s):  
T.A. Black ◽  
J.W. Harden

Four plots from a mixed conifer forest were similarly cleared, burned, and replanted at various times over 17 years; a plot logged 79 years before sampling was used as a control. The plots had similar slope (2 to 15%, midslope position), aspect (south to southeast), and soil type (Holland series: mesic Haploxeralf; a Gray Brown Luvisol in the Canadian classification system). Twenty sites at each plot were sampled volumetrically by horizon to 20 cm below the organic–mineral soil boundary. Samples were analyzed for bulk density, organic C, and total N. There was an initial loss (15%) of organic C from the soil within 1 to 7 years, likely the result of oxidation (burning and decomposition) and erosion. For 17 years of forest regrowth, the soil continued to lose C (another 15%), probably owing to decomposition of slash material and possibly erosion, despite the slight accumulation of new litter and roots. After 80 years of regrowth, rates of carbon accumulation exceeded rates of loss, but carbon storage had declined and was not likely to recover to preharvest levels. Timber harvest and site preparation dramatically altered soil C and N distribution, in which C/N ratios after site preparation were initially high throughout the upper 20 cm. Subsequently, C/N ratios became lower with depth and with recovery age. Although stocks of C and N varied considerably among the plots and did not change consistently as a function of recovery age, the C/N ratios did vary systematically with recovery age. We hypothesize that the amount of C ultimately stored in the soil at steady state depends largely on N reserves and potentials, which appear to vary with erosion, intensity of burning, and site treatment.



1994 ◽  
Vol 24 (6) ◽  
pp. 1101-1106 ◽  
Author(s):  
R.L. Edmonds ◽  
H.N. Chappell

Mineral soil and forest floor C and N contents were determined in 154 Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) and western hemlock (Tsugaheterophylla (Raf.) Sarg.) stands in western Oregon and Washington ranging in age from 16 to 64 years. Relationships between site index and mineral soil and forest floor C, N, and C/N ratios were examined. Douglas-fir data were analyzed by geographic province (Puget Sound, Washington Cascades, Oregon Cascades, coastal Washington, coastal Oregon, and southwest Oregon). Average mineral soil C in Douglas-fir stands ranged from 102 Mg/ha to 177 Mg/ha in Puget Sound and Washington Cascades provinces, respectively. Soil N ranged from 3708 kg/ha in Puget Sound province to 9268 kg/ha in the Washington Cascade province. Western hemlock data were analyzed in three provinces (Washington Cascades, coastal Washington, and coastal Oregon). Average mineral soil C in western hemlock stands ranged from 241 Mg/ha in the Washington Cascades to 309 Mg/ha in coastal Washington and was higher than Douglas-fir mineral soil C. Western hemlock mineral soil N was also higher than Douglas-fir mineral soil N ranging from 10 495 kg/ha in the Washington Cascades to 15 216 kg/ha in coastal Oregon. Forest floor C and N contents were also higher in western hemlock than Douglas-fir stands. Nonlinear regression analysis revealed a weak positive relationship between site index and total mineral soil C in Douglas-fir (r2 = 0.19). A similar relationship was observed between Douglas-fir site index and total soil N (r2 = 0.19). Relationships were weak because of the large variability in mineral soil C and N within as well as across provinces. Maximum Douglas-fir site indexes occurred across a broad plateau of mineral soil and forest floor C/N ratios ranging from 15–25 and 35–45, respectively. Minimum site indexes also occurred in these C/N ranges. No increase in Douglas-fir productivity occurred above mineral soil C levels of 125 Mg/ha. There were no relationships between site index and mineral soil C and N or C/N ratios in western hemlock stands.



Soil Research ◽  
2006 ◽  
Vol 44 (2) ◽  
pp. 85 ◽  
Author(s):  
Neal A. Scott ◽  
Kevin R. Tate ◽  
Des J. Ross ◽  
Aroon Parshotam

Since 1992, afforestation with Pinus radiata D. Don in New Zealand has led to the establishment of over 600 000 ha of new plantation forests, about 85% of which are on fertile pastures used previously for grazing sheep and cattle. While this leads to rapid accumulation of carbon (C) in vegetation, the effects of afforestation on soil C are poorly understood. We examined key soil C cycling processes at the (former) Tikitere agroforestry experimental site near Rotorua, New Zealand. In 1973, replicated stands of P. radiata (100 and 400 stems/ha) were established on pastures, while replicated pasture plots were maintained throughout the first 26-year rotation. In 1996, soil C and microbial biomass C in 0–0.10 m depth soil, in situ soil respiration and net N mineralisation, and soil temperature were lower in the forest than in the pasture, and tended to decline with increasing tree-stocking density. In the 400 stems/ha stands, mineral soil C (0–0.50 m depth) was lower than in the pasture (104 and 126 Mg C/ha, respectively; P < 0.01). Carbon accumulation in the forest floor during the first rotation of these forest stands was 12 Mg C/ha. Using the Rothamsted soil C model (Roth-C), we examined how changes in plant C inputs following afforestation might lead to changes in soil C content to 0.30 m depth. Steady-state pasture inputs of 9.0 Mg C/ha.year were estimated using Roth-C; these C inputs were assumed to decrease linearly during the first 12 years following tree establishment (until canopy closure). Below-ground C inputs in the forest were estimated using steady-state relationships between litterfall and soil respiration; these inputs were assumed to increase linearly between years 1 and 12, after which they remained constant at 1.53 Mg C/ha.year until harvest. Measured changes in soil C (0−0.30 m) during the first rotation, in conjunction with the below-ground inputs, were used to estimate above-ground inputs (as a proportion of total litterfall [3.81 Mg C/ha.year]) to the soil. Our results suggest 10% of litterfall C over one rotation actually entered the mineral soil. Using these results and estimates of additional C inputs to the soil from harvest slash and weeds following harvest, we found mineral-soil C stocks would continue to decline during second and third rotations of P. radiata; the magnitude of this decline depended in part on how much slash enters the mineral soil matrix. We confirmed our modelling approach by simulating soil C changes to within 8% over 19 years following afforestation of pasture at another previously studied site, Purukohukohu. Whether afforestation leads to an increase or decrease in mineral-soil C may depend on previous pasture management; in highly productive pastures, high C inputs to the soil may maintain soil C at levels that cannot be sustained when trees are planted onto these grasslands.



2016 ◽  
Vol 2 (4) ◽  
pp. 165-182 ◽  
Author(s):  
Chelsea L. Petrenko ◽  
Julia Bradley-Cook ◽  
Emily M. Lacroix ◽  
Andrew J. Friedland ◽  
Ross A. Virginia

Shrub species are expanding across the Arctic in response to climate change and biotic interactions. Changes in belowground carbon (C) and nitrogen (N) storage are of global importance because Arctic soils store approximately half of global soil C. We collected 10 (60 cm) soil cores each from graminoid- and shrub-dominated soils in western Greenland and determined soil texture, pH, C and N pools, and C:N ratios by depth for the mineral soil. To investigate the relative chemical stability of soil C between vegetation types, we employed a novel sequential extraction method for measuring organo-mineral C pools of increasing bond strength. We found that (i) mineral soil C and N storage was significantly greater under graminoids than shrubs (29.0 ± 1.8 versus 22.5 ± 3.0 kg·C·m−2 and 1.9 ± .12 versus 1.4 ± 1.9 kg·N·m−2), (ii) chemical mechanisms of C storage in the organo-mineral soil fraction did not differ between graminoid and shrub soils, and (iii) weak adsorption to mineral surfaces accounted for 40%–60% of C storage in organo-mineral fractions — a pool that is relatively sensitive to environmental disturbance. Differences in these C pools suggest that rates of C accumulation and retention differ by vegetation type, which could have implications for predicting future soil C pool storage.



2002 ◽  
Vol 32 (2) ◽  
pp. 344-352 ◽  
Author(s):  
P W Clinton ◽  
R B Allen ◽  
M R Davis

Stemwood production, N pools, and N availability were determined in even-aged (10, 25, 120, and >150-year-old) stands of a monospecific mountain beech (Nothofagus solandri var. cliffortioides (Hook. f.) Poole) forest in New Zealand recovering from catastrophic canopy disturbance brought about by windthrow. Nitrogen was redistributed among stemwood biomass, coarse woody debris (CWD), the forest floor, and mineral soil following disturbance. The quantity of N in stemwood biomass increased from less than 1 kg/ha in seedling stands (10 years old) to ca. 500 kg/ha in pole stands (120 years old), but decreased in mature stands (>150 years old). In contrast, the quantity of N stored in CWD declined rapidly with stand development. Although the mass of N stored in the forest floor was greatest in the pole stands and least in the mature stands, N availability in the forest floor did not vary greatly with stand development. The mass of N in the mineral soil (0–100 mm depth) was also similar for all stands. Foliar N concentrations, net N mineralization, and mineralizable N in the mineral soil (0–100 mm depth) showed similar patterns with stage of stand development, and indicated that N availability was greater in sapling (25 years old) and mature stands than in seedling and pole stands. We conclude that declining productivity in older stands is associated more with reductions in cation availability, especially calcium, than N availability.



Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1562
Author(s):  
Iveta Varnagirytė-Kabašinskienė ◽  
Povilas Žemaitis ◽  
Kęstutis Armolaitis ◽  
Vidas Stakėnas ◽  
Gintautas Urbaitis

In the context of the specificity of soil organic carbon (SOC) storage in afforested land, nutrient-poor Arenosols and nutrient-rich Luvisols after afforestation with coniferous and deciduous tree species were studied in comparison to the same soils of croplands and grasslands. This study analysed the changes in SOC stock up to 30 years after afforestation of agricultural land in Lithuania, representing the cool temperate moist climate region of Europe. The SOC stocks were evaluated by applying the paired-site design. The mean mass and SOC stocks of the forest floor in afforested Arenosols increased more than in Luvisols. Almost twice as much forest floor mass was observed in coniferous than in deciduous stands 2–3 decades after afforestation. The mean bulk density of fine (<2 mm) soil in the 0–30 cm mineral topsoil layer of croplands was higher than in afforested sites and grasslands. The clear decreasing trend in mean bulk density due to forest stand age with the lowest values in the 21–30-year-old stands was found in afforested Luvisols. In contrast, the SOC concentrations in the 0–30 cm mineral topsoil layer, especially in Luvisols afforested with coniferous species, showed an increasing trend due to the influence of stand age. The mean SOC values in the 0–30 cm mineral topsoil layer of Arenosols and Luvisols during the 30 years after afforestation did not significantly differ from the adjacent croplands or grasslands. The mean SOC stock slightly increased with the forest stand age in Luvisols; however, the highest mean SOC stock was detected in the grasslands. In the Arenosols, there was higher SOC accumulation in the forest floor with increasing stand age than in the Luvisols, while the proportion of SOC stocks in mineral topsoil layers was similar and more comparable to grasslands. These findings suggest encouragement of afforestation of former agricultural land under the current climate and soil characteristics in the region, but the conversion of perennial grasslands to forest land should be done with caution.



Sign in / Sign up

Export Citation Format

Share Document