Relationships among forest soil C isotopic composition, partitioning, and turnover times

2006 ◽  
Vol 36 (9) ◽  
pp. 2157-2167 ◽  
Author(s):  
Charles T Garten Jr.

The purpose of this research was to test the hypothesis that vertical enrichment of soil δ13C values is related to rates of soil C turnover in undisturbed, mature forest ecosystems. Soil C and N were measured at nine sites along an altitudinal gradient in the southern Appalachian Mountains (Tennessee and North Carolina, USA). Measurements indicated greater labile and total soil C stocks with increasing altitude. Laboratory incubations (3 days) of rewetted, air-dry soils indicated potential soil C mineralization (µg CO2 produced·g–1 soil C) declined with elevation. A principal component analysis indicated N availability increased with altitude. At each site, there was a significant relationship between δ13C and log-transformed C concentrations in the soil profile (30 cm deep). Enrichment factors (ε) from the Rayleigh equation were also equally useful for describing soil δ13C profiles at each site. Soil C partitioning and turnover times along the gradient were correlated with 13C-enrichment factors. Greater rates of change in δ13C through the soil profile were correlated with faster soil C turnover. Environmental factors, soil C partitioning, and the rate of vertical change in soil 13C abundance are interrelated such that δ13C measurements are a potential indicator of C dynamics in undisturbed forest soils.

2014 ◽  
Vol 20 (7) ◽  
pp. 2356-2367 ◽  
Author(s):  
Ruirui Chen ◽  
Mehmet Senbayram ◽  
Sergey Blagodatsky ◽  
Olga Myachina ◽  
Klaus Dittert ◽  
...  

HortScience ◽  
2019 ◽  
Vol 54 (6) ◽  
pp. 1023-1030 ◽  
Author(s):  
Rafael A. Muchanga ◽  
Toshiyuki Hirata ◽  
Hajime Araki

Cover crops and compost application may influence soil quality and productivity of fresh-market tomatoes. The effects of hairy vetch (HV) (Vicia villosa Roth) and livestock compost on soil C and N stocks, N availability, and tomato yield were evaluated for 2 years in a plastic high tunnel. Averaged across years, soil C and N stocks increased in plots incorporating hairy vetch and compost more than in plots with no hairy vetch and compost. When compared with baseline stocks (initial soil C and N stocks before the initiation of the examination), soil C stock increased by 3%, 2.8%, 2.6% in the HV treatment, the compost treatment, and the HV and compost treatment, respectively. In contrast, a 1.85% loss of soil C stock was observed in a no HV and no compost (bare) treatment. Soil N stocks increased in all treatments, with the greatest increase in the compost treatment (26%) and the lowest in the bare treatment (9.3%). Averaged across sampling dates, the HV treatment exhibited the greatest soil N availability and nitrate levels in leaf petiole in both years, whereas the bare treatment exhibited the lowest soil N availability and nitrate levels in leaf petiole. HV + compost and compost treatments showed a similar influence on soil N availability, but HV + compost exhibited greater nitrate levels in leaf petiole than the compost treatment. The marketable and total yields were 10% to 15% greater in the HV and the compost treatments than in the bare treatment. N uptake was 17% to 38% greater in the HV treatment than in the other treatments. Because of unstable cover crop production in the northern region, a combined application of cover crops and compost may be one of the best practices to compensate for low cover crop biomass production by increasing organic matter input to the soil, thereby improving soil quality and tomato yield.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6897 ◽  
Author(s):  
Yujuan Zhang ◽  
Shiming Tang ◽  
Shu Xie ◽  
Kesi Liu ◽  
Jinsheng Li ◽  
...  

Background Patchy vegetation is a very common phenomenon due to long-term overgrazing in degraded steppe grasslands, which results in substantial uncertainty associated with soil carbon (C) and nitrogen (N) dynamics because of changes in the amount of litter accumulation and nutrition input into soil. Methods We investigated soil C and N stocks beneath three types of monodominant species patches according to community dominance. Stipa krylovii patches, Artemisia frigida patches, and Potentilla acaulis patches represent better to worse vegetation conditions in a grassland in northern China. Results The results revealed that the soil C stock (0–40 cm) changed significantly, from 84.7 to 95.7 Mg ha−1, and that the soil organic carbon content (0–10 cm) and microbial biomass carbon (0–10 and 10–20 cm) varied remarkably among the different monodominant species communities (P < 0.05). However, soil total nitrogen and microbial biomass nitrogen showed no significant differences among different plant patches in the top 0–20 cm of topsoil. The soil C stocks under the P. acaulis and S. krylovii patches were greater than that under the A. frigida patch. Our study implies that accurate estimates of soil C and N storage in degenerated grassland require integrated analyses of the concurrent effects of differences in plant community composition.


2021 ◽  
Author(s):  
David Pessanha Siqueira ◽  
Emanuela Forestieri Gama-Rodrigues ◽  
Marcos Vinícius Winckler Caldeira ◽  
Carlos Eduardo Rezende ◽  
Claudio Roberto Marciano ◽  
...  

Abstract Aims Atlantic Rainforest biome is one of the most threatened in the world by deforestation where afforestation programs are urgently needed. N-fixing species should be prioritized in re-establishing forest covers as they can enhance soil C and N and stimulate cycling of other nutrients. Yet, tropical ecosystems play a key role in global warming and remain underestimated in the global biogeochemical balances. We aimed to investigate the effects of tropical N-fixing species on soil C and N pools after pasture conversionMethods We selected: Plathymenia reticulata, Hymenaea courbaril, and Centrolobium tomentosum 27-year-old monospecific stands. We evaluated soil organic carbon (SOC), nitrogen (STN), and the natural abundance of 13C and 15N in the soil profile up to 100 cm depth. Results SOC was higher for P. reticulata, but an opposite pattern was observed when combining only soil layers up to 30 cm soil depth. Meanwhile, STN was similar across species and d15N values showed enrichment at intermediate soil layers indicating 14N gaseous loss. Most of the SOC originated from the planted trees rather than the former pasture, except beneath C. tomentosum where C4 derived C is decreasing at a slower rate. Conclusion This study presents novel insights in the understanding of tropical N-fixing species effects on soil C and N where specific-species traits appear to mediate SOC retention to the mineral soil rather than the N-fixing ability per se.


2005 ◽  
Vol 37 (5) ◽  
pp. 819-827 ◽  
Author(s):  
E. Personeni ◽  
A. Lüscher ◽  
P. Loiseau

2008 ◽  
Vol 32 (3) ◽  
pp. 1253-1260 ◽  
Author(s):  
Fabiano de Carvalho Balieiro ◽  
Marcos Gervasio Pereira ◽  
Bruno José Rodrigues Alves ◽  
Alexander Silva de Resende ◽  
Avílio Antonio Franco

In spite of the normally low content of organic matter found in sandy soils, it is responsible for almost the totality of cation exchange capacity (CEC), water storage and availability of plant nutrients. It is therefore important to evaluate the impact of alternative forest exploitation on the improvement of soil C and N accumulation on these soils. This study compared pure and mixed plantations of Eucalyptus grandis and Pseudosamanea guachapele, a N2-fixing leguminous tree, in relation to their effects on soil C and N stocks. The studied Planosol area had formerly been covered by Panicum maximum pasture for at least ten years without any fertilizer addition. To estimate C and N contents, the soil was sampled (at depths of 0-2.5; 2.5-5.0; 5.0-7.5; 7.5-10.0; 10.0-20.0 and 20.0-40.0 cm), in pure and mixed five-year-old tree plantations, as well as on adjacent pasture. The natural abundance 13C technique was used to estimate the contribution of the soil organic C originated from the trees in the 0-10 cm soil layer. Soil C and N stocks under mixed plantation were 23.83 and 1.74 Mg ha-1, respectively. Under guachapele, eucalyptus and pasture areas C stocks were 14.20, 17.19 and 24.24 Mg ha-1, respectively. For these same treatments, total N contents were 0.83; 0.99 and 1.71 Mg ha-1, respectively. Up to 40 % of the soil organic C in the mixed plantation was estimated to be derived from trees, while in pure eucalyptus and guachapele plantations these same estimates were only 19 and 27 %, respectively. Our results revealed the benefits of intercropped leguminous trees in eucalyptus plantations on soil C and N stocks.


Ecosystems ◽  
2019 ◽  
Vol 23 (5) ◽  
pp. 1107-1119 ◽  
Author(s):  
Lettice C. Hicks ◽  
Kathrin Rousk ◽  
Riikka Rinnan ◽  
Johannes Rousk

AbstractArctic and subarctic soils are typically characterized by low nitrogen (N) availability, suggesting N-limitation of plants and soil microorganisms. Climate warming will stimulate the decomposition of organic matter, resulting in an increase in soil nutrient availability. However, it remains unclear how soil microorganisms in N-limited soils will respond, as the direct effect of inorganic N addition is often shown to inhibit microbial activity, while elevated N availability may have a positive effect on microorganisms indirectly, due to a stimulation of plant productivity. Here we used soils from a long-term fertilization experiment in the Subarctic (28 years at the time of sampling) to investigate the net effects of chronic N-fertilization (100 kg N ha−1 y−1, added together with 26 kg P and 90 kg K ha−1 y−1, as expected secondary limiting nutrients for plants) on microbial growth, soil C and N mineralization, microbial biomass, and community structure. Despite high levels of long-term fertilization, which significantly increased primary production, we observed relatively minor effects on soil microbial activity. Bacterial growth exhibited the most pronounced response to long-term fertilization, with higher rates of growth in fertilized soils, whereas fungal growth remained unaffected. Rates of basal soil C and N mineralization were only marginally higher in fertilized soils, whereas fertilization had no significant effect on microbial biomass or microbial community structure. Overall, these findings suggest that microbial responses to long-term fertilization in these subarctic tundra soils were driven by an increased flow of labile plant-derived C due to stimulated plant productivity, rather than by direct fertilization effects on the microbial community or changes in soil physiochemistry.


2012 ◽  
Vol 47 (5) ◽  
pp. 707-715 ◽  
Author(s):  
Mariana da Luz Potes ◽  
Deborah Pinheiro Dick ◽  
Graciele Sarante Santana ◽  
Michely Tomazi ◽  
Cimélio Bayer

The objective of this work was to evaluate the distribution pattern and composition of soil organic matter (SOM) and its physical pools of Leptosols periodically affected by fire over the last 100 years in South Brazil. Soil samples at 0-5, 5-10, and 10-15 cm depths were collected from the following environments: native pasture without burning in the last year and grazed with 0.5 livestock per hectare per year (1NB); native pasture without burning in the last 23 years and grazed with 2.0 livestock per hectare per year (23NB); and an Araucaria forest (AF). Physical fractionation was performed with the 0-5 and 5-10 cm soil layers. Soil C and N stocks were determined in the three depths and in the physical pools, and organic matter was characterized by infrared spectroscopy and thermogravimetry. The largest C stocks in all depths and physical pools were found under the AF. The 23NB environment showed the lowest soil C and N stocks at the 5-15 cm depth, which was related to the end of burning and to the higher grazing intensity. The SOM of the occluded light fraction showed a greater chemical recalcitrance in 1NB than in 23NB. Annual pasture burning does not affect soil C stocks up to 15 cm of depth.


Sign in / Sign up

Export Citation Format

Share Document