Prolactin directly enhanced Na+/K+- and Ca2+-ATPase activities in the duodenum of female rats

2006 ◽  
Vol 84 (5) ◽  
pp. 555-563 ◽  
Author(s):  
Narattaphol Charoenphandhu ◽  
Liangchai Limlomwongse ◽  
Nateetip Krishnamra

Prolactin has recently been shown to directly stimulate 2 components of the active duodenal calcium transport in female rats, i.e., solvent drag-induced and transcellular-active calcium transport. Since the basolateral Na+/K+- and Ca2+-ATPases, respectively, play important roles in these 2 transport mechanisms, the present study aimed to examine the direct actions of prolactin on the activities of both transporters in sexually mature female Wistar rats. The results showed that 200, 400, and 800 ng/mL prolactin produced a significant increase in the total ATPase activity of duodenal crude homogenate in a dose-dependent manner within 60 min (i.e., from a control value of 1.53 ± 0.13 to 2.29 ± 0.21 (p < 0.05), 2.68 ± 0.19 (p < 0.01), and 3.92 ± 0.33 (p < 0.001) µmol Pi·(mg protein)–1·min–1, respectively). Activity of Na+/K+-ATPase was increased by 800 ng/mL prolactin from 0.17 ± 0.03 to 1.18 ± 0.29 µmol Pi·(mg protein)–1·min–1 (p < 0.01). Prolactin at doses of 400 and 600 ng/mL also significantly increased the activities of Ca2+-ATPase in crude homogenate from a control value of 0.84 ± 0.03 to 1.75 ± 0.29 (p < 0.05), and 2.30 ± 0.37 (p < 0.001) µmol Pi·(mg protein)–1·min–1. When the crude homogenate was purified for the basolateral membrane, the Na+/K+-ATPase activities were elevated 10-fold. In the purified homogenate, 800 ng/mL prolactin increased Na+/K+-ATPase activity from 1.79 ± 0.38 to 2.63 ± 0.44 µmol Pi·(mg protein)–1·min–1 (p < 0.05), and Ca2+-ATPase activity from 0.08 ± 0.14 to 2.03 ± 0.23 µmol Pi·(mg protein)–1·min–1 (p < 0.001). Because the apical calcium entry was the first important step for the transcellular active calcium transport, the brush border calcium uptake was also investigated in this study. We found that, 8 min after being directly exposed to 800 ng/mL prolactin, the brush border calcium uptake into the duodenal epithelial cells was increased from 0.31 ± 0.02 to 0.80 ± 0.28 nmol·(mg protein)–1 (p < 0.05). It was concluded that prolactin directly and rapidly enhanced the brush border calcium uptake as well as the activities of the basolateral Na+/K+- and Ca2+-ATPases in the duodenal epithelium of female rats. These findings explained the mechanisms by which prolactin stimulated duodenal active calcium absorption.

1986 ◽  
Vol 251 (3) ◽  
pp. G314-G320 ◽  
Author(s):  
C. Roche ◽  
C. Bellaton ◽  
D. Pansu ◽  
A. Miller ◽  
F. Bronner

Vitamin D-replete (+D) and vitamin D-deficient (-D) rats received by intraperitoneal injection varying amounts of 1,25-dihydroxyvitamin D3, and 4 h (+D) or 9 h (-D) later everted duodenal sacs were prepared to evaluate active calcium transport, i.e., the amount of calcium found in the serosal fluid. At the same time, duodenal calcium-binding protein (CaBP) content was measured. Calcium transport was a close positive function of CaBP content. It was not detectable when CaBP content was zero and increased linearly without plateauing as CaBP content increased to 100 nmol calcium bound/g mucosa. Trifluoperazine (TFP) inhibited active calcium transport in a concentration-dependent manner. Experiments using vesicles prepared from brush-border or basolateral membranes indicated that TFP inhibited the calcium-extrusion process, with virtually no effect on calcium entry. It is concluded that vitamin D exerts its major regulation of active calcium transport in the rat duodenum via CaBP on transport steps beyond brush-border entry.


2001 ◽  
Vol 79 (5) ◽  
pp. 430-438 ◽  
Author(s):  
Narattaphol Charoenphandhu ◽  
Liangchai Limlomwongse ◽  
Nateetip Krishnamra

Prolactin has been postulated to be a novel calcium-regulating hormone during pregnancy and lactation. It stimulates both passive and active duodenal calcium transport in several experimental models. Our study was performed on sexually mature female Wistar rats (200–250 g) to study the direct action of prolactin on calcium transport in the duodenum using the Ussing chamber technique. To evaluate the effect of prolactin on total calcium transport in the duodenum, we intraperitoneally injected rats with 0.4, 0.6, and 0.8 mg/kg prolactin. The total calcium transport was divided into voltage-dependent, solvent drag-induced, and transcellular active fluxes by applying short-circuit current and by mucosal glucose replacement with mannitol. The effect of prolactin on each flux was studied separately. Finally, to evaluate the direct action of prolactin on duodenal transcellular active flux, we directly exposed duodenal segments to prolactin that had been added to the serosal solution with or without calcium transport inhibitors. We found that 0.6 and 0.8 mg/kg prolactin ip significantly increased the total mucosa–to–serosa calcium flux from the control value (nmol·hr–1·cm–2) of 34.53 ± 6.81 to 68.07 ± 13.53 (P < 0.05) and 84.43 ± 19.72 (P < 0.01), respectively. Prolactin also enhanced the solvent drag-induced calcium flux and transcellular active calcium flux, but not the voltage-dependent calcium flux. The duodenal segments directly exposed to 200, 400, and 800 ng/mL prolactin showed a significant increase in the transcellular active calcium absorption in a dose-dependent manner, i.e., from the control value (nmol·hr–1·cm–2) of 2.94 ± 0.47 to 5.45 ± 0.97 (P < 0.01), 8.09 ± 0.52 (P < 0.001), and 18.42 ± 2.92 (P < 0.001), respectively. Its direct action was inhibited by mucosal exposure to 50 µM lanthanum chloride, a calcium transporter protein competitor, and serosal exposure to 0.1 mM trifluoperazine, a Ca2+-ATPase inhibitor. These studies demonstrate that the duodenum is a target organ of prolactin, which enhances transcellular active calcium transport.Key words: calcium absorption, duodenum, prolactin, solvent drag, transcellular calcium transport.


1988 ◽  
Vol 255 (6) ◽  
pp. F1170-F1177 ◽  
Author(s):  
S. R. Gullans ◽  
B. C. Kone ◽  
M. J. Avison ◽  
G. Giebisch

Succinate, a dicarboxylic acid, is an intermediate in the Krebs cycle that is transported and metabolized by the renal proximal tubule. It is also known to increase proximal tubule transport of phosphate and glucose but not fluid by unknown mechanisms. In the present study, succinate increased proximal tubule respiration in a dose-dependent manner, and a kinetic evaluation indicated that two separate processes were activated. A lower-affinity (Km = 0.9 mM), higher-capacity stimulation (Vmax increase of 49%) was attributed to a decrease in the mitochondrial coupling efficiency. A higher-affinity process (Km = 0.012 mM) was related to an apparent increase in ATP synthesis. The apparent increase in ATP synthesis was not associated with a change in Na+-K+-ATPase activity, however, but rather indicated a 49% increase in ion transport-independent ATP utilization. Basolateral membrane potential hyperpolarized by -7 mV in the presence of succinate, and this was related to an increase in the K+ transference number. Finally, 1 and 5 mM succinate promoted a net cellular uptake of K+, leading to an 11% increase in intracellular K+, which was not the result of an increase in Na+-K+-ATPase activity. Thus the cellular entry and metabolism of succinate promotes multiple changes in ion transport without altering Na+-K+-ATPase activity.


1987 ◽  
Vol 252 (2) ◽  
pp. G170-G177 ◽  
Author(s):  
J. R. Walters ◽  
M. M. Weiser

Rat duodenal cells were isolated sequentially to give fractions enriched for villus and crypt cells. From each of these fractions, basolateral-enriched membrane vesicles were prepared and ATP-dependent calcium uptake was studied. Calcium uptake was sensitive to temperature, was inhibited by vanadate and by A23187, and was lower in vitamin D-deficient animals. In normal animals, calcium transport was approximately twofold greater in villus-tip than in crypt cell-fraction basolateral membranes though the affinity of the uptake for calcium was similar (Km = 0.3 microM). In vitamin D-deficient animals, the crypt-to-villus gradient was reduced, and in all fractions, calcium transport was similar to or lower than that in the crypts of normal animals. Six hours after vitamin D-deficient animals were repleted with 1,25-dihydroxycholecalciferol, a significant increase in calcium transport by everted gut sacs was present; however, basolateral calcium transport was significantly increased in only the mid-villus fractions, and no change was seen in the villus-tip fractions. Thus vitamin D appears necessary for the development of increased basolateral membrane calcium pump activity in duodenal villus cells, but not all cells in vitamin D-deficient rats are able to respond to 1,25-dihydroxycholecalciferol.


1992 ◽  
Vol 262 (5) ◽  
pp. G797-G805
Author(s):  
J. Takito ◽  
T. Shinki ◽  
H. Tanaka ◽  
T. Suda

The role of the calcium pump in the stimulation of intestinal calcium transport activity by 1 alpha,25-dihydroxyvitamin D3 [1 alpha,25(OH)2D3] was examined in chicks. The in situ intestinal absorption of calcium increased approximately threefold in the duodenum, jejunum, and ileum 6 h after a single injection of 625 ng of 1 alpha,25(OH)2D3 into vitamin D-deficient chicks. The same treatment also increased approximately twofold the rate of ATP-dependent calcium uptake by the basolateral membrane vesicles (BL) isolated from those three sites. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that a Mg(2+)-dependent calcium-stimulated phosphorylated intermediate with an apparent molecular mass of 105 kDa appeared in the BL. The 1 alpha,25(OH)2D3 treatment gave no change in the levels of the intermediate. Pretreatment of the BL with alkaline phosphatase decreased the calcium uptake by the BL isolated from 1 alpha,25(OH)2D3-treated chicks, but it had little effect on the uptake by the BL from vitamin D-deficient chicks. These results suggest that at an early stage of the 1 alpha,25(OH)2D3-induced intestinal calcium transport process, the vitamin regulates the calcium-pumping activity of chick intestinal BL by phosphorylation and dephosphorylation but not by a stoichiometric change in the pump.


1982 ◽  
Vol 242 (3) ◽  
pp. C242-C249 ◽  
Author(s):  
G. D. Ford ◽  
M. L. Hess

A vesicular fraction isolated from bovine aorta and enriched in fragmented sarcoplasmic reticulum (FSR) exhibited active calcium transport and ATPase activity. By use of a hypotonic NaHCO3 extraction solution, an active preparation was isolated that retained activity for up to 4 days. A small but significant (P less than 0.05) Ca2+-stimulated, Mg2+-dependent ATPase associated with calcium transport was demonstrated with a specific activity of 0.33 mumol inorganic phosphate (Pi).mg-1.min-1. The basal Mg2+ ATPase demonstrated Michaelis-Menten kinetics [Km(Mg2+-ATP) = 0.44 +/- 0.01 X 10(-3) M; Vmax = 2.22 +/- 0.01 mumolPi.mg-1.min-1]. The Ca2+-stimulated, Mg2+-ATPase demonstrated apparent substrate inhibition (Ks approximately 10 mM) with no evidence for end-product (ADP) or excess added Ca2+ contributing to this inhibition. Oxalate-supported active calcium uptake velocities also exhibited quantitatively similar substrate inhibition. These results suggest that FSR from vascular smooth muscle contains either two enzymes or one enzyme with two isomeric forms, one of which is associated with the calcium uptake activity of this structure and the other of unknown function.


1988 ◽  
Vol 252 (1) ◽  
pp. 215-220 ◽  
Author(s):  
A Enyedi ◽  
J Minami ◽  
A J Caride ◽  
J T Penniston

A plasma membrane-enriched fraction from rat myometrium shows ATP-Mg2+-dependent active calcium uptake which is independent of the presence of oxalate and is abolished by the Ca2+ ionophore A23187. Ca2+ loaded into vesicles via the ATP-dependent Ca2+ uptake was released by extravesicular Na+. This showed that the Na+/Ca2+ exchange and the Ca2+ uptake were both occurring in plasma membrane vesicles. In a medium containing KCl, vanadate readily inhibited the Ca2+ uptake (K1/2 5 microM); when sucrose replaced KCl, 400 microM-vanadate was required for half inhibition. Only a slight stimulation of the calcium pump by calmodulin was observed in untreated membrane vesicles. Extraction of endogenous calmodulin from the membranes by EGTA decreased the activity and Ca2+ affinity of the calcium pump; both activity and affinity were fully restored by adding back calmodulin or by limited proteolysis. A monoclonal antibody (JA3) directed against the human erythrocyte Ca2+ pump reacted with the 140 kDa Ca2+-pump protein of the myometrial plasma membrane. The Ca2+-ATPase activity of these membranes is not specific for ATP, and is not inhibited by mercurial agents, whereas Ca2+ uptake has the opposite properties. Ca2+-ATPase activity is also over 100 times that of calcium transport; it appears that the ATPase responsible for transport is largely masked by the presence of another Ca2+-ATPase of unknown function. Measurements of total Ca2+-ATPase activity are, therefore, probably not directly relevant to the question of intracellular Ca2+ control.


1991 ◽  
Vol 260 (4) ◽  
pp. C731-C737 ◽  
Author(s):  
N. A. Delamere ◽  
C. A. Paterson ◽  
D. Borchman ◽  
K. L. King ◽  
S. A. Cawood

Calcium transport was monitored by measuring ATP-dependent 45Ca uptake into membrane vesicles prepared from rabbit lens cortex. Calcium-stimulated adenosinetriphosphatase (Ca2(+)-ATPase) activity was also measured in the same membrane preparation. Both uptake and Ca2(+)-ATPase activity were inhibited by vanadate. Calcium activation of the uptake process was similar to that of the Ca2(+)-ATPase. Calcium uptake was prevented by calcium ionophore A23187, suggesting that the calcium transported into the vesicles remains diffusible. The ATP-dependent calcium uptake probably represents the transport of calcium into “inside-out” membrane vesicles by the Ca2(+)-ATPase mechanism that normally shifts calcium outward from the lens cytoplasm. The temperature dependence of the Ca2(+)-ATPase and the calcium uptake process was determined. Because lipid order can influence Ca2(+)-ATPase function, we attempted to correlate calcium transport with the physical state of the membrane lipids. Infrared spectroscopy was used to determine the temperature dependence of the CH2 symmetric stretching frequency (an order parameter) in the lipids. A similarity was noted between the temperature-dependence curves for lipid order, Ca2(+)-ATPase, and calcium uptake rate. Entropy, enthalpy, and transition temperature calculated for the Ca2(+)-ATPase and calcium uptake process were in the same range as those parameters calculated for the lipid-phase transition.


1986 ◽  
Vol 82 (1) ◽  
pp. 85-97
Author(s):  
R.S. Tuan ◽  
M.J. Carson ◽  
J.A. Jozefiak ◽  
K.A. Knowles ◽  
B.A. Shotwell

This study aimed to investigate the mechanism of active calcium transport in the chick embryonic chorioallantoic membrane (CAM) by assessing the functional involvement of three previously identified, putative components of the transport pathway. These components are a calcium-binding protein (CaBP), Ca2+-activated ATPase and carbonic anhydrase. Using specific reagents, including antibodies and enzyme inhibitors in vivo and in vitro in CAM calcium uptake assays, it was shown that these biochemically identified components were all functionally involved. The results of these studies also indicate that active calcium uptake by the CAM requires the presence of the CaBP on the cell surface in a laterally mobile manner, while carbonic anhydrase appeared to be a cytosolic component. We further analysed the subcellular location of the calcium-uptake activity by gel filtration and density-gradient fractionation of cell-free microsomes of the CAM and the results suggest that this activity is associated with the plasma membrane.


Sign in / Sign up

Export Citation Format

Share Document