The Effects of Melatonin and Serotonin on Blood Flow Fraction and Testosterone Metabolism in Selected Organs of the Male Rat

1973 ◽  
Vol 51 (5) ◽  
pp. 313-318 ◽  
Author(s):  
G. A. Kinson ◽  
Nora E. MacDonald ◽  
C-C. Liu

The fractional distribution of cardiac output to the testes, adrenals, liver, and kidneys and the conversion of testosterone to 4-androstenedione by hepatic and renal homogenates in vitro were measured 4 weeks after implantation of male rats with melatonin and serotonin. The fractional blood flow to these organs was not significantly influenced by the indoles. There was, however, a tendency for the adrenal fraction to be lower in indole-treated rats. Blood levels of corticosterone in these animals were reduced, but significantly so only in the rats implanted with serotonin. The ability of liver preparations to metabolize testosterone in the presence of excess nicotinamide–adenine dinucleotide was enhanced after treatment with both indoles suggesting that at least one of the 17β-hydroxysteroid dehydrogenases had been stimulated. In the case of the kidney, melatonin administration gave rise to depression of the NAD-linked conversion whereas serotonin treatment caused reductions in testosterone conversions in the presence of either NAD or NADP.

2000 ◽  
Vol 279 (2) ◽  
pp. H610-H618 ◽  
Author(s):  
Greg G. Geary ◽  
Diana N. Krause ◽  
Sue P. Duckles

Gender is known to influence the incidence and severity of cerebrovascular disease. In the present study, luminal diameter was measured in vitro in pressurized middle cerebral artery segments from male rats that were either untreated, orchiectomized (ORX), ORX with testosterone treatment (ORX+TEST), or ORX with estrogen treatment (ORX+EST). The maximal passive diameters (0 Ca2+ + 3 mM EDTA) of arteries from all four groups were similar. In endothelium-intact arteries, myogenic tone was significantly greater in arteries from untreated and ORX+TEST compared with arteries from either ORX or ORX+EST. During exposure to N G-nitro-l-arginine-methyl ester (l-NAME), an NO synthase (NOS) inhibitor, myogenic tone significantly increased in all groups. The effect of l-NAME was significantly greater in arteries from untreated and ORX+EST compared with arteries from ORX and ORX+TEST rats. Differences in myogenic tone between ORX and ORX+TEST persisted after inhibition of NOS. After endothelium removal or inhibition of the cyclooxygenase pathway combined with K+ channel blockers, myogenic tone differences between ORX and ORX+TEST were abolished. Wall thickness and forced dilation were not significantly different between arteries from ORX and ORX+TEST. Our data show that gonadal hormones affect myogenic tone in male rat cerebral arteries through NOS- and/or endothelium-dependent mechanisms.


1984 ◽  
Vol 247 (3) ◽  
pp. G226-G230
Author(s):  
R. B. Kirkpatrick ◽  
B. G. Kraft

The sulfation of bile acids is hormone dependent, being increased in females and ethynylestradiol (EE)-treated males compared with normal males. Diabetes causes significant alterations in estrogen metabolism and uterine estrogen receptor kinetics. Male rats were given streptozotocin (90 mg/kg) and diabetes was verified. An increase in hepatic bile acid sulfotransferase (BAST) activity was significant by 6 days and continued to increase to 29 days. This increase was prevented by insulin replacement. Administration of EE (6.0-600 micrograms X kg-1 X day-1) to normal male rats resulted in a significant increase in hepatic BAST activity; however, administration of similar doses of EE to diabetic males failed to further increase activity levels over the already-elevated levels in the diabetic controls. This increase in in vitro specific activity was accompanied by an increase in the biliary excretion of lithocholate 3-sulfate and taurolithocholate 3-sulfate in 21-day-diabetic animals. Bile flow and total bile acid excretion were also markedly increased in the diabetic animals. The data indicate that streptozotocin-induced diabetes causes a significant increase in hepatic BAST activity. These findings are consistent with an alteration in hepatic estrogen action in streptozotocin-induced diabetes.


2000 ◽  
pp. 406-410 ◽  
Author(s):  
M Tena-Sempere ◽  
L Pinilla ◽  
LC Gonzalez ◽  
J Navarro ◽  
C Dieguez ◽  
...  

The obese gene (ob) product, leptin, has recently emerged as a key element in body weight homeostasis, neuroendocrine function and fertility. Identification of biologically active, readily synthesized fragments of the leptin molecule has drawn considerable attention, as they may provide a powerful tool for detailed characterization of the biological actions of leptin in different experimental settings. Recently, a fragment of mouse leptin protein comprising amino acids 116-130, termed leptin(116-130) amide, was shown to mimic the effects of the native molecule in terms of body weight gain and food intake, and to elicit LH and prolactin (PRL) secretion in vivo. As a continuation of our previous experimental work, the present study reports on the effects of leptin(116-130) amide on basal and stimulated testosterone secretion by adult rat testis in vitro. In addition, a comparison of the effects of human recombinant leptin and leptin(116-130) amide at the pituitary level on the patterns of LH, FSH, PRL and GH secretion is presented. As reported previously by our group, human recombinant leptin(10(-9)-10(-7)M) significantly inhibited both basal and human chorionic gonadotrophin (hCG)-stimulated testosterone secretion in vitro. Similarly, incubation of testicular tissue in the presence of increasing concentrations of leptin(116-130) amide (10(-9)-10(-5)M) resulted in a dose-dependent inhibition of basal and hCG-stimulated testosterone secretion; a reduction that was significant from a dose of 10(-7)M upwards. In addition, leptin(116-130) amide, at all doses tested (10(-9)-10(-5)M), significantly decreased LH and FSH secretion by incubated hemi-pituitaries from adult male rats. In contrast, in the same experimental protocol, recombinant leptin(10(-9)-10(-7)M) was ineffective in modulating LH and FSH release. Finally, neither recombinant leptin nor leptin(116-130) amide were able to change basal PRL and GH secretion in vitro. Our results confirm the ability of leptin, acting at the testicular level, to inhibit testosterone secretion, and map the effect to a domain of the leptin molecule that lies between amino acid residues 116 and 130. In addition, we provide evidence for a direct inhibitory action of leptin(116-130) amide on pituitary LH and FSH secretion, a phenomenon not observed for the native leptin molecule, in the adult male rat.


1968 ◽  
Vol 46 (4) ◽  
pp. 653-659 ◽  
Author(s):  
L. Jansky ◽  
J. S. Hart

Cold acclimation increased the cardiac output of unanesthetized rats when measured at 30 °C. After exposure to 9 °C for 70 min cardiac output further increased by 46% in both warm- and cold-acclimated rats. From the changes in the fractional distribution of cardiac output after cold exposure it was shown that the blood flow increased significantly in muscular organs (heart, diaphragm, skeletal muscles) and in the adrenals of warm-acclimated rats. In cold-acclimated rats the blood flow to the brown and white adipose tissues, pancreas, kidney, intestine, liver, and other internal organs was also increased in a cold environment, and accounted for 65% of the increase in blood flow during exposure to cold compared with only 36% in warm-acclimated rats. It is estimated that the extramuscular thermogenesis can account for a greater proportion of the total nonshivering thermogenesis in cold-acclimated rats. The contribution of brown adipose tissue is estimated not to exceed about 6% of the total heat production increase in cold-acclimated rats during exposure to cold.


2014 ◽  
Vol 307 (4) ◽  
pp. H504-H514 ◽  
Author(s):  
K. Tarhouni ◽  
M. L. Freidja ◽  
A. L. Guihot ◽  
E. Vessieres ◽  
L. Grimaud ◽  
...  

In resistance arteries, a chronic increase in blood flow induces hypertrophic outward remodeling. This flow-mediated remodeling (FMR) is absent in male rats aged 10 mo and more. As FMR depends on estrogens in 3-mo-old female rats, we hypothesized that it might be preserved in 12-mo-old female rats. Blood flow was increased in vivo in mesenteric resistance arteries after ligation of the side arteries in 3- and 12-mo-old male and female rats. After 2 wk, high-flow (HF) and normal-flow (NF) arteries were isolated for in vitro analysis. Arterial diameter and cross-sectional area increased in HF arteries compared with NF arteries in 3-mo-old male and female rats. In 12-mo-old rats, diameter increased only in female rats. Endothelial nitric oxide synthase expression and endothelium-mediated relaxation were higher in HF arteries than in NF arteries in all groups. ERK1/2 phosphorylation, NADPH oxidase subunit expression levels, and arterial contractility to KCl and to phenylephrine were greater in HF vessels than in NF vessels in 12-mo-old male rats only. Ovariectomy in 12-mo-old female rats induced a similar pattern with an increased contractility without diameter increase in HF arteries. Treatment of 12-mo-old male rats and ovariectomized female rats with hydralazine, the antioxidant tempol, or the angiotensin II type 1 receptor blocker candesartan restored HF remodeling and normalized arterial contractility in HF vessels. Thus, we found that FMR of resistance arteries remains efficient in 12-mo-old female rats compared with age-matched male rats. A balance between estrogens and vascular contractility might preserve FMR in mature female rats.


1978 ◽  
Vol 56 (1) ◽  
pp. 97-109 ◽  
Author(s):  
David O. Foster ◽  
M. Lorraine Frydman

The technique of using γ-labeled plastic microspheres (15 ± 5 μm) to measure cardiac output (CO) and its fractional distribution (FD) to individual tissues and organs was judged by various criteria to give valid data when applied to barbital-sedated warm-acclimated or cold-acclimated (CA) white rats, which were either resting or responding calorigenically to infused noradrenaline (NA). The FD of CO to each of 16 tissues or organs of CA rats at rest or responding to NA was then estimated both with 86Rb+ and with microspheres, the two tracers being injected simultaneously. For only seven of the tissues examined in resting rats and only one in NA-infused rats was the FD of CO estimated with 86Rb+ not significantly different from that estimated with microspheres. 86Rb+ to microsphere ratios of the FD of CO to individual tissues ranged from 3.5 and 3.0 for liver and skeletal muscle, respectively, down to 0.09 and 0.07 for brown adipose tissue (BAT) and brain. Since microsphere-based estimates of blood flow to the interscapular BAT of CA rats responding to NA were corroborated by direct measurements of venous efflux from the tissue, it is unequivocal that the 86Rb+-based estimate of the fraction of CO directed to interscapular BAT was highly erroneous. When considered along with data from the literature, the present findings support a conclusion that the uptake of 86Rb+ by a tissue frequently does not provide a valid measure of the FD of CO to the tissue. Some of the factors that are likely responsible for this situation are discussed, and it is suggested that only by a fortuitous combination of circumstances does the uptake of 86Rb+ by a tissue sometimes match the FD of CO to the tissue.


2004 ◽  
Vol 181 (2) ◽  
pp. 223-231 ◽  
Author(s):  
V Viau ◽  
MJ Meaney

Hypothalamic-pituitary-adrenal (HPA) activity is governed by glucocorticoid negative feedback and the magnitude of this signal is determined, in part, by variations in plasma corticosteroid-binding globulin (CBG) capacity. Here, in gonadectomized male rats we examine the extent to which different testosterone replacement levels impact on CBG and HPA function. Compared with gonadectomized rats with low testosterone replacement ( approximately 2 ng/ml), plasma adrenocorticotropin and beta-endorphin/beta-lipotropin responses to restraint stress were reduced in gonadectomized rats with high testosterone replacement ( approximately 5 ng/ml). Plasma CBG levels also varied negatively as a function of testosterone concentration. Moreover, glucocorticoid receptor binding in the liver was elevated by higher testosterone replacement, suggesting that testosterone acts to enhance glucocorticoid suppression of CBG synthesis. Since pituitary intracellular CBG (or transcortin) is derived from plasma, this prompted us to examine whether transcortin binding was similarly responsive to different testosterone replacement levels. Transcortin binding was lower in gonadectomized rats with high plasma testosterone replacement ( approximately 7 ng/ml) than in gonadectomized rats with low testosterone replacement ( approximately 2 ng/ml). This testosterone-dependent decrease in pituitary transcortin was associated, in vitro, with an enhanced nuclear uptake of corticosterone. These findings indicate that the inhibitory effects of testosterone on corticotrope responses to stress may be linked to decrements in plasma and intrapituitary CBG. This could permit greater access of corticosterone to its receptors and enhance glucocorticoid feedback regulation of ACTH release and/or proopiomelanocortin processing.


1990 ◽  
Vol 122 (3) ◽  
pp. 329-335 ◽  
Author(s):  
Elio Messi ◽  
Mariarosa Zanisi ◽  
Luciano Martini

Abstract. Evidence indicates that long and short feedback systems are altered in the aged male rat. Data also indicate the existence of an ultrashort feedback mechanism controlling GnRH secretion. The present experiments were performed to test whether the ultrashort feedback control of GnRH is operating also in old male rats. Mediobasal hypothalami of 18-month-old male rats were perifused in vitro either in the presence or in the absence of a GnRH agonistic analogue (Buserelin: [D-Ser(TBU)6, Des-Gly10]GnRH ethylamide) and stimulated with 5-min pulses of K+ (for a total of six pulses) in order to test their ability to release GnRH. The hypothalamic fragment was exposed to the GnRH analogue either for a part of the experimental period (at the beginning or at the end) or for the whole duration of the perifusion. In both cases, the presence of the analogue diminished or totally abolished the responses to K+ stimulation. This is in line with the results obtained in young animals. The data suggest that the ultrashort feedback mechanism controlling GnRH release is normally functioning also in aged male rats despite the fact that other types of feedback mechanisms (long and short loop) are substantially altered.


Endocrinology ◽  
2003 ◽  
Vol 144 (9) ◽  
pp. 3969-3976 ◽  
Author(s):  
T. M. Badger ◽  
M. J. J. Ronis ◽  
S. J. Frank ◽  
Y. Chen ◽  
L. He

Abstract Chronic alcohol intake in male rats results in: 1) demasculinization of the GH pulse pattern; 2) reduced serum testosterone concentrations; and 3) decreased expression hepatic CYP2C11. Hepatic CYP2C11 expression is regulated by the male pattern of GH through the Janus-kinase/signal transducer and activators of transcription proteins (JAK/STAT) signal transduction pathway in the male rat. Renal CYP2C11 is regulated by testosterone, not GH. The involvement of the JAK/STAT5b signal transduction pathway in renal CYP2C11 signaling has not been studied. We tested the hypothesis that ethanol reduces CYP2C11 levels by interfering with the JAK/STAT5b pathway. Using a total enteral nutrition (TEN) model to feed rats a well-balanced diet, we have studied the effects of chronic ethanol intake (21 d) on hepatic and renal JAK/STAT pathway of adult male rats (8–10/group). We found decreased hepatic and renal expression of CYP2C11 in ethanol-fed rats with concomitant decreases in STAT5b and phospho-STAT5b, decreased in vitro hepatic STAT5b binding to a CYP2C11 promoter element and no effects on hepatic GHR levels. Ethanol caused tissue specific effects in phospho-JAK2 and JAK2, with increased levels in the liver, but decreased JAK2 expression in the kidney. We conclude that ethanol suppression of CYP2C11 expression is clearly associated with reductions in STAT5b levels, but not necessarily in reductions of JAK2 levels. The mechanisms underlying ethanol-induced suppression of STAT5b is yet to be determined, as is the question of whether this is secondary to hormonal effects or a direct ethanol effect.


2020 ◽  
Vol 176 (2) ◽  
pp. 297-311
Author(s):  
Leon E Gray ◽  
Johnathan R Furr ◽  
Christy S Lambright ◽  
Nicola Evans ◽  
Phillip C Hartig ◽  
...  

Abstract Multiple molecular initiating events exist that disrupt male sexual differentiation in utero including androgen receptor (AR) antagonism and inhibition of synthesis, and metabolism of fetal testosterone. Disruption of androgen signaling by AR antagonists in utero reduces anogenital distance (AGD) and induces malformations in F1 male rat offspring. We are developing a quantitative network of adverse outcome pathways that includes multiple molecular initiating events and key events linking anti-AR activities to permanent reproductive abnormalities. Here, our objective was to determine how accurately the EC50s for AR antagonism in vitro or ED50s for reduced tissue growth in the Hershberger assay (HA) (key events in the adverse outcome pathway) predict the ED50s for reduced AGD in male rats exposed in utero to AR antagonists. This effort included in-house data and published studies from the last 60 years on AR antagonism in vitro and in vivo effects in the HA and on AGD after in utero exposure. In total, more than 250 studies were selected and included in the analysis with data from about 60 potentially antiandrogenic chemicals. The ability to predict ED50s for key events and adverse developmental effects from the in vitro EC50s displays considerable uncertainty with R2 values for HA and AGD of < 6%. In contrast, there is considerably less uncertainty in extrapolating from the ED50s in the HA to the ED50s for AGD (R2 value of about 85%). In summary, the current results suggest that the key events measured in the HA can be extrapolated with reasonable certainty to predict the ED50s for the adverse in utero effects of antiandrogenic chemicals on male rat offspring.


Sign in / Sign up

Export Citation Format

Share Document