Fish antifreeze proteins: physiology and evolutionary biology

1988 ◽  
Vol 66 (12) ◽  
pp. 2611-2617 ◽  
Author(s):  
Peter L. Davies ◽  
Choy L. Hew ◽  
Garth L. Fletcher

Many marine teleosts have adapted to ice-laden seawater by evolving antifreeze proteins and glycoproteins. These proteins are synthesized in the liver for export to the blood where they circulate at levels of up to 20 mg/mL. There are at least four distinct antifreeze protein classes differing in carbohydrate content, amino acid composition, protein sequence, and secondary structure. In addition to antifreeze structural diversity, fish species differ considerably with respect to mechanisms controlling seasonal regulation of plasma antifreeze concentrations. Some species synthesize antifreeze proteins immediately before the onset of freezing conditions, some synthesize them in response to such conditions, whereas others possess high concentrations all year. Endogenous rhythms, water temperature, photoperiod, and pituitary hormones have all been implicated as regulators of plasma antifreeze protein levels. The structural diversity of antifreeze proteins and their occurrence in a wide range of fish species suggest that they evolved separately and recently during Cenozoic glaciation. Invariably, the genes coding for these antifreeze proteins are amplified, sometimes as long tandem arrays, suggesting intense selective pressure to produce large amounts of protein. The distribution of antifreeze gene types among fish species suggests that they could serve as important tools for studying phylogenetic relationships.

1986 ◽  
Vol 64 (9) ◽  
pp. 1897-1901 ◽  
Author(s):  
Garth L. Fletcher ◽  
Ming H. Kao ◽  
Ron M. Fourney

It has been widely accepted that plasma antifreeze proteins are directly responsible for the ability of many marine teleosts to survive in ice-laden seawater. However, there appears to be no direct experimental evidence to indicate that this assumption is correct. In the present study winter flounder (Pseudopleuronectes americanus) showed seasonal changes in freezing resistance that were quantitatively the same as the seasonal changes in plasma antifreeze protein levels. Moreover, when winter flounder antifreeze proteins were injected into rainbow trout (Salmo gairdneri) (a species that does not normally possess antifreeze proteins) they increased the freezing resistance of the trout in direct proportion to plasma antifreeze protein levels attained. These studies indicate that antifreeze proteins are directly responsible for the ability of many marine teleosts to survive icy seawater at temperatures below the colligative freezing points of their blood. There appears to be no requirement for species-specific antifreeze protein receptors in the fish in order for them to act.


Studies of animal behavior often assume that all members of a species exhibit the same behavior. Geographic Variation in Behavior shows that, on the contrary, there is substantional variation within species across a wide range of taxa. Including work from pioneers in the field, this volume provides a balanced overview of research on behavioral characteristics that vary geographically. The authors explore the mechanisms by which behavioral differences evolve and examine related methodological issues. Taken together, the work collected here demonstrates that genetically based geographic variation may be far more widespread than previously suspected. The book also shows how variation in behavior can illuminate both behavioral evolution and general evolutionary patterns. Unique among books on behavior in its emphasis on geographic variation, this volume is a valuable new resource for students and researchers in animal behavior and evolutionary biology.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Sreeharsh Nair ◽  
Mayank Mittal

AbstractThe advent of stricter emission standards has increased the importance of aftertreatment devices and the role of numerical simulations in the evolution of better catalytic converters in order to satisfy these emission regulations. In this paper, a 2-D numerical simulation of a single channel of the monolith catalytic converter is presented by using detailed surface reaction kinetics aiming to investigate the chemical behaviour inside the converter. The model has been developed to study the conversion of carbon monoxide (CO) in the presence of propene (C3H6) for low-temperature combustion (LTC) engine application. The inhibition effect of C3H6 over a wide range of CO inlet concentrations is investigated. Considering both low and high levels of CO concentration at the inlet, the 2-D model predicted better results than their corresponding 1-D counterparts when compared with the experimental data from literature. It was also observed that C3H6 inhibition at high temperatures was significant, particularly for high concentrations of CO compared to low concentrations of CO at the inlet.


1992 ◽  
Vol 20 (1) ◽  
pp. 146-163
Author(s):  
Francis H. Kruszewski ◽  
Laura H. Hearn ◽  
Kyle T. Smith ◽  
Janice J. Teal ◽  
Virginia C. Gordon ◽  
...  

465 cosmetic product formulations and raw ingredients were evaluated with the EYTEX™ system to determine the potential of this in vitro alternative for identifying eye irritation potential. The EYTEX™ system is a non-animal, biochemical procedure developed by Ropak Laboratories, Irvine, CA, that was designed to approximate the Draize rabbit eye irritation assay for the evaluation of ocular irritation. Avon Products Inc. provided all the test samples, which included over 30 different product types and represented a wide range of eye irritancy. All the EYTEX™ protocols available at the time of this study were used. Samples were evaluated double-blind with both the membrane partition assay (MPA) and the rapid membrane assay (RMA). When appropriate, the standard assay (STD) and the alkaline membrane assay (AMA) were used, as well as specific, documented protocol modifications. EYTEX™ results were correlated with rabbit eye irritation data which was obtained from the historical records of Avon Products Inc. A positive agreement of EYTEX™ results with the in vivo assay was demonstrated by an overall concordance of 80%. The assay error was 20%, of which 18% was due to an overestimation of sample irritancy (false positives) and 2% was attributed to underestimation (false negatives). Overestimation error in this study was due in part to the inability of the protocols to accurately classify test samples with very low irritation potential. Underestimation of sample irritancy was generally associated with ethoxylated materials and high concentrations of specific types of surfactants. 100% sensitivity and 85% predictability were described by the data, indicating the efficiency of EYTEX™ in identifying known irritants. A specificity rate of 39% showed the EYTEX™ assay to be weak in discerning non-irritants. However, the EYTEX™ protocols used in this study were not designed to identify non-irritants. A compatibility rate of 99% proved the effectiveness of the EYTEX™ assay in accommodating a diversity of product types. The EYTEX™ system protocols, when used appropriately, can provide a conservative means of assessing the irritant potential of most cosmetic formulations and their ingredients.


Oxygen ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 3-15
Author(s):  
John T. Hancock

Control of cellular function is extremely complex, being reliant on a wide range of components. Several of these are small oxygen-based molecules. Although reactive compounds containing oxygen are usually harmful to cells when accumulated to relatively high concentrations, they are also instrumental in the control of the activity of a myriad of proteins, and control both the upregulation and downregulation of gene expression. The formation of one oxygen-based molecule, such as the superoxide anion, can lead to a cascade of downstream generation of others, such as hydrogen peroxide (H2O2) and the hydroxyl radical (∙OH), each with their own reactivity and effect. Nitrogen-based signaling molecules also contain oxygen, and include nitric oxide (NO) and peroxynitrite, both instrumental among the suite of cell signaling components. These molecules do not act alone, but form part of a complex interplay of reactions, including with several sulfur-based compounds, such as glutathione and hydrogen sulfide (H2S). Overaccumulation of oxygen-based reactive compounds may alter the redox status of the cell and lead to programmed cell death, in processes referred to as oxidative stress, or nitrosative stress (for nitrogen-based molecules). Here, an overview of the main oxygen-based molecules involved, and the ramifications of their production, is given.


1982 ◽  
Vol 57 (3) ◽  
pp. 334-340 ◽  
Author(s):  
Kamal S. Paul ◽  
Eric T. Whalley ◽  
Christine Forster ◽  
Richard Lye ◽  
John Dutton

✓ The authors have studied the ability of prostacyclin to reverse contractions of human basilar arteries in vitro that were induced by a wide range of substances implicated in the etiology of cerebral arterial spasm. Prostacyclin (10−10 to 10−6M) caused a dose-related reversal of contractions induced by 5-hydroxytryptamine, noradrenaline, angiotensin II, prostaglandin (PG)F2α, and U-46619 (a thromboxane-A2 mimetic). These agents were tested at concentrations or volumes that produced almost maximum or maximum responses and those that produced approximately 50% of the maximum response. Contractions induced by maximum concentrations of angiotensin II and U-46619 were least affected by prostacyclin. In addition, contractions induced by thromboxane-A2 generated from guinea-pig lung were reversed in a dose-dependent fashion by prostacyclin. This ability of prostacyclin to physiologically antagonize contractions of the human basilar artery in vitro induced by high concentrations of various spasmogenic agents suggests that such a potent vasodilator agent or more stable analogue may be of value in the treatment of such disorders as cerebral arterial spasm following subarachnoid hemorrhage.


2016 ◽  
Vol 43 (4) ◽  
pp. 324 ◽  
Author(s):  
Supriya Tiwari ◽  
Rüdiger Grote ◽  
Galina Churkina ◽  
Tim Butler

High concentrations of ozone (O3) can have significant impacts on the health and productivity of agricultural and forest ecosystems, leading to significant economic losses. In order to estimate this impact under a wide range of environmental conditions, the mechanisms of O3 impacts on physiological and biochemical processes have been intensively investigated. This includes the impact on stomatal conductance, the formation of reactive oxygen species and their effects on enzymes and membranes, as well as several induced and constitutive defence responses. This review summarises these processes, discusses their importance for O3 damage scenarios and assesses to which degree this knowledge is currently used in ecosystem models which are applied for impact analyses. We found that even in highly sophisticated models, feedbacks affecting regulation, detoxification capacity and vulnerability are generally not considered. This implies that O3 inflicted alterations in carbon and water balances cannot be sufficiently well described to cover immediate plant responses under changing environmental conditions. Therefore, we suggest conceptual models that link the depicted feedbacks to available process-based descriptions of stomatal conductance, photosynthesis and isoprenoid formation, particularly the linkage to isoprenoid models opens up new options for describing biosphere-atmosphere interactions.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1492
Author(s):  
Francisco G. Blanco ◽  
Natalia Hernández ◽  
Virginia Rivero-Buceta ◽  
Beatriz Maestro ◽  
Jesús M. Sanz ◽  
...  

Bacterial biopolymers are naturally occurring materials comprising a wide range of molecules with diverse chemical structures that can be produced from renewable sources following the principles of the circular economy. Over the last decades, they have gained substantial interest in the biomedical field as drug nanocarriers, implantable material coatings, and tissue-regeneration scaffolds or membranes due to their inherent biocompatibility, biodegradability into nonhazardous disintegration products, and their mechanical properties, which are similar to those of human tissues. The present review focuses upon three technologically advanced bacterial biopolymers, namely, bacterial cellulose (BC), polyhydroxyalkanoates (PHA), and γ-polyglutamic acid (PGA), as models of different carbon-backbone structures (polysaccharides, polyesters, and polyamides) produced by bacteria that are suitable for biomedical applications in nanoscale systems. This selection models evidence of the wide versatility of microorganisms to generate biopolymers by diverse metabolic strategies. We highlight the suitability for applied sustainable bioprocesses for the production of BC, PHA, and PGA based on renewable carbon sources and the singularity of each process driven by bacterial machinery. The inherent properties of each polymer can be fine-tuned by means of chemical and biotechnological approaches, such as metabolic engineering and peptide functionalization, to further expand their structural diversity and their applicability as nanomaterials in biomedicine.


1970 ◽  
Vol 39 (1) ◽  
pp. 61-69 ◽  
Author(s):  
Ashafaque Ahmed ◽  
Mikael Ohlson ◽  
Sirajul Hoque ◽  
Md Golam Moula

Chemical composition of leaves of Sonneratia apetala Buch.-Ham. collected from three islands (chars) representing three hydrological regimes in a segment of the coastal zone of Bangladesh was studied. Their relations to some soil chemical and physical variables have also been investigated. The results showed that concentrations of B, C, Fe, Ga, Li, Mg, Mn, N, Na, P, Zn and Sr in leaves of S. apetala grown in different islands differed significantly. It was also revealed that some heavy metals, viz. Mn, Fe, Al, Sr and Ti showed wide range of concentrations. The leaves from one of the locations in Motherbunia island were characterized by exceptional high concentrations of heavy metals such as Al, As, Cu, Fe, Li, Ni, Pb that may be due to local contamination. Leaves sampled in the most seaward locations of the same island had highest concentrations of Ba, Ca, Cu, Mn and Na. High Mn concentration was found in the leaves of S. apetala of Motherbunia island. Correlations among soil and plant samples were generally very weak and organic matter content of soil did not appear to play a significant role in the nutrient supply of S. apetala. Key words: Coastal zone; tidal inundation; elemental concentration; Sonneratia apetala DOI: 10.3329/bjb.v39i1.5528Bangladesh J. Bot. 39(1): 61-69, 2010 (June)


Sign in / Sign up

Export Citation Format

Share Document