scholarly journals A generalized interacting Tsallis holographic dark energy model and its thermodynamic implications

2020 ◽  
Vol 80 (10) ◽  
Author(s):  
Abdulla Al Mamon ◽  
Amir Hadi Ziaie ◽  
Kazuharu Bamba

AbstractThe present paper deals with a theoretical model for interacting Tsallis holographic dark energy (THDE) whose infrared cut-off scale is set by the Hubble length. The interaction Q between the dark sectors (dark energy and pressureless dark matter) of the universe has been assumed to be non-gravitational in nature. The functional form of Q is chosen in such a way that it reproduces well known and most used interactions as special cases. We then study the nature of the THDE density parameter, the equation of state parameter, the deceleration parameter and the jerk parameter for this interacting THDE model. Our study shows that the universe exhibits the usual thermal history, namely the successive sequence of radiation, dark matter and dark energy epochs, before resulting in a complete dark energy domination in the far future. It is shown the evolution of the Hubble parameter for our model and compared that with the latest Hubble parameter data. Finally, we also investigate both the stability and thermodynamic nature of this model in the present context.

2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Y. Sobhanbabu ◽  
M. Vijaya Santhi

AbstractIn this work devoted to the investigation of the Tsallis holographic dark energy (IR cut-off is Hubble radius) in homogeneous and anisotropic Kantowski–Sachs Universe within the frame-work of Saez–Ballester scalar tensor theory of gravitation. We have constructed non-interacting and interacting Tsallis holographic dark energy models by solving the field equations using the relationship between the metric potentials. This relation leads to a viable deceleration parameter model which exhibits a transition of the Universe from deceleration to acceleration. In interacting case, we focus on sign-changeable interaction between Tsallis holographic dark energy and dark matter. The dynamical parameters like equation of state parameter, energy densities of Tsallis holographic dark energy and dark matter, deceleration parameter, and statefinder parameters of the models are explained through graphical representation. And also, we discussed the stability analysis of the our models.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Vipin Chandra Dubey ◽  
Umesh Kumar Sharma ◽  
Abdulla Al Mamon

In this work, we construct an interacting model of the Rényi holographic dark energy in the Brans-Dicke theory of gravity using Rényi entropy in a spatially flat Friedmann-Lemaître-Robertson-Walker Universe considering the infrared cut-off as the Hubble horizon. In this setup, we then study the evolutionary history of some important cosmological parameters, in particular, deceleration parameter, Hubble parameter, equation of state parameter, and Rényi holographic dark energy density parameter in both nonflat Universe and flat Universe scenarios and also observe satisfactory behaviors of these parameters in the model. We find that during the evolution, the present model can give rise to a late-time accelerated expansion phase for the Universe preceded by a decelerated expansion phase for both flat and nonflat cases. Moreover, we obtain ω D → − 1 as z → − 1 , which indicates that this model behaves like the cosmological constant at the future. The stability analysis for the distinct estimations of the Rényi parameter δ and coupling coefficient b 2 has been analyzed. The results indicate that the model is stable at the late time.


2020 ◽  
Vol 29 (03) ◽  
pp. 2050023 ◽  
Author(s):  
Ayman A. Aly ◽  
Mohammed Abd Elrashied ◽  
Mustafa M. Selim

The aim of this work is to analyze the modified form of holographic dark energy (DE) density suggested by Tsallis and Cirto within inhomogeneous models of the universe. This DE model is applied to IR cutoff equals the Hubble horizon. Some basic cosmological functions, such as the Hubble function, the deceleration function and the equation of state parameter, are reconstructed by choosing specific values of certain numerical parameters in this model. The stability of the model is studied by considering the square of sound speed and the strong, the weak and the dominant energy conditions (DEC). In addition, the variation of the diagnostic Omega, [Formula: see text] and [Formula: see text] parameters with the redshift and space are studied. The obtained results show a close behavior to that of the cosmological constant DE universe so it can be compared well with the recent observations.


2021 ◽  
Author(s):  
Clive Anthony Redwood

Abstract The gravitational natures of phenomena separately attributed to dark matter and dark energy and challenges encountered in identifying such sources motivate enquiry into the capabilities of the field, itself, to generate such phenomena. It is found that, in curvature-free Friedmann-Lemaître-Robertson-Walker and gravitationally perturbed Robertson-Walker spacetimes, gravity has an equation of state parameter w = -1 and negative pressures. Expanding space is proposed as the form of a growing cosmic gravitational field. The gravitational-spatial expansion is locally isobaric. Barotropic gravitational dynamics yield the Hubble-Lemaître law. The expansion results from the induction of gravity by matter, radiation and by itself. Gravitational auto-induction is a dynamical feedback process that produces an isotropic spatial expansion with an invariant Hubble parameter like a ‘cosmological constant’ of density 2H2/κ or, equivalently, of a density parameter of 2/3. The Planck 2018 result is moderately higher at about the 2.5/σ level. A new expression of the Hubble parameter in the late homogeneous universe is obtained. The growth of the field isotropically stretches geodesics. In homogeneous regions, this manifests as the Hubble acceleration of bodies and the redshifting of radiation attributed to dark energy. Geodesics may depend on gravitational energy density that retains its values at comoving locations. In inhomogeneous regions, such retentions lead to similar retentions of circular speeds and deflection angles - geodesic stretching - attributed to clustering dark matter. The baryonic Tully-Fisher relation is explained. Dependence of geodesics on gravitational energy explains tidal interactions as being inertial gravitational processes.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Abdul Jawad ◽  
Abdul Malik Sultan

We investigate the recently proposed holographic dark energy models with the apparent horizon as the IR cutoff by assuming Kaniadakis and generalized Tsallis entropies in the fractal universe. The implications of these models are discussed for both the interacting ( Γ = 3 H b 2 ρ m ) and noninteracting ( b 2 = 0 ) cases through different cosmological parameters. Accelerated expansion of the universe is justified for both models through deceleration parameter q . In this way, the equation of state parameter ω d describes the phantom and quintessence phases of the universe. However, the coincidence parameter r ~ = Ω m / Ω d shows the dark energy- and dark matter-dominated eras for different values of parameters. It is also mentioned here that the squared speed of sound gives the stability of the model except for the interacting case of the generalized Tsallis holographic dark energy model. It is mentioned here that the current dark energy models at the apparent horizon give consistent results with recent observations.


2019 ◽  
Vol 28 (14) ◽  
pp. 1944002 ◽  
Author(s):  
Spyros Basilakos ◽  
Nick E. Mavromatos ◽  
Joan Solà Peracaula

We present a string-based picture of the cosmological evolution in which (CP-violating) gravitational anomalies acting during the inflationary phase of the universe cause the vacuum energy density to “run” with the effective Hubble parameter squared, [Formula: see text], thanks to the axion field of the bosonic string multiplet. This leads to baryogenesis through leptogenesis with massive right-handed neutrinos. The generation of chiral matter after inflation helps in cancelling the anomalies in the observable radiation- and matter-dominated eras. The present era inherits the same “running vacuum” structure triggered during the inflationary time by the axion field. The current dark energy is thus predicted to be mildly dynamical, and dark matter should be made of axions. Paraphrasing Carl Sagan [ https://www.goodreads.com/author/quotes/10538.Carl_Sagan .]: we are all anomalously made from starstuff.


2015 ◽  
Vol 24 (07) ◽  
pp. 1550048 ◽  
Author(s):  
M. Honarvaryan ◽  
A. Sheykhi ◽  
H. Moradpour

In this paper, we point out thermodynamical description of ghost dark energy (GDE) and its generalization to the early universe. Thereinafter, we find expressions for the entropy changes of these dark energy (DE) candidates. In addition, considering thermal fluctuations, thermodynamics of the DE component interacting with a dark matter (DM) sector is addressed. We will also find the effects of considering the coincidence problem on the mutual interaction between the dark sectors, and thus the equation of state parameter of DE. Finally, we derive a relation between the mutual interaction of the dark components of the universe, accelerated with the either GDE or its generalization, and the thermodynamic fluctuations.


2013 ◽  
Vol 91 (4) ◽  
pp. 351-354 ◽  
Author(s):  
Antonio Pasqua ◽  
Surajit Chattopadhyay

In this paper, we have studied and investigated the behavior of a modified holographic Ricci dark energy (DE) model interacting with pressureless dark matter (DM) under the theory of modified gravity, dubbed logarithmic f(T) gravity. We have chosen the interaction term between DE and DM in the form Q = 3γHρm and investigated the behavior of the torsion, T, the Hubble parameter, H, the equation of state parameter, ωDE, the energy density of DE, ρDE, and the energy density contribution due to torsion, ρT, as functions of the redshift, z. We have found that T increases with the redshift, z, H increases with the evolution of the universe, ωDE has a quintessence-like behavior, and both energy densities increase going from higher to lower redshifts.


2020 ◽  
Vol 12 (4) ◽  
pp. 569-574
Author(s):  
C. Sivakumar ◽  
R. Francis

A slightly different power law-scaling fits to the picture of our 13.7 billion years old flat universe which is expanding presently at 67 km/s/Mpc with an acceleration. The model which is an attempt to retain power-law scaling in the light of the accepted facts about the universe we are living in, has a constant effective equation of state parameter as the cosmic fluid is a solution of matter, radiation and dark energy. It is successful in explaining the acceleration of universe which the normal power law fails if the present Hubble parameter is 67 km/s/Mpc and age of the universe is 13.7 billion years, and it is free from the defect of singularity.


2021 ◽  
Vol 42 (1) ◽  
pp. 39-57
Author(s):  
Mohammad Moksud Alam

The holographic dark energy (HDE), a form of dark energy, has been a useful tool in explaining the recent phase transition of the universe. In this paper, we study the anisotropic and homogeneous Bianchi type-III model of the universe filled with minimally interacting matter and holographic dark energy under the framework of the Brans-Dicke (BD) scalar tensor theory of gravitation. Considering two physically plausible conditions such as, (i) the special law of variation for Hubble parameter and (ii) the scalar expansion proportional to the shear scalar, we propose two new models namely, exponential expansion model and power law expansion model. We also show the dynamics of these models fit with existing observational data and literature thereof. The transit behavior of the equation of state parameter for dark energy has been analyzed graphically. The jerk parameter is also studied for both of the models describing cosmological evolution. The Chittagong Univ. J. Sci. 42(1): 39-57, 2020


Sign in / Sign up

Export Citation Format

Share Document