A SPIKE-BASED MODEL OF BINAURAL SOUND LOCALIZATION

1999 ◽  
Vol 09 (05) ◽  
pp. 447-452 ◽  
Author(s):  
CARSTEN SCHAUER ◽  
PETER PASCHKE

This paper describes a spike-based model of binaural sound localization using interaural time differences (ITDs). To handle the problem of temporal coding and to facilitate a hardware implementation all neurons are simulated by a spike response model, which includes postsynaptic potentials (PSPs) and a refractory period. A winner-take-all (WTA) network selects the dominant source from the representation of the sound's angles of incidences, and can be biased by a multisensory support, We use simulations on real audio data to investigate the function and the practical application of the system.

2019 ◽  
Author(s):  
Woongsang Sunwoo ◽  
Bertrand Delgutte ◽  
Yoojin Chung

AbstractCochlear implant (CI) users with a pre-lingual onset of hearing loss show poor sensitivity to interaural time differences (ITD), an important cue for sound localization and speech reception in noise. Similarly, neural ITD sensitivity in the inferior colliculus (IC) of neonatally-deafened animals is degraded compared to animals deafened as adults. Here, we show that chronic bilateral CI stimulation during development can partly reverse the effect of early-onset deafness on ITD sensitivity. The prevalence of ITD sensitive neurons was restored to the level of adult-deaf rabbits in the early-deaf rabbits that received chronic stimulation with wearable bilateral sound processors during development. In contrast, chronic CI stimulation did not improve temporal coding in early-deaf rabbits. The present study is the first report showing functional restoration of ITD sensitivity with CI stimulation in single neurons and highlights the importance of auditory experience during development.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Antje Ihlefeld ◽  
Nima Alamatsaz ◽  
Robert M Shapley

Human sound localization is an important computation performed by the brain. Models of sound localization commonly assume that sound lateralization from interaural time differences is level invariant. Here we observe that two prevalent theories of sound localization make opposing predictions. The labelled-line model encodes location through tuned representations of spatial location and predicts that perceived direction is level invariant. In contrast, the hemispheric-difference model encodes location through spike-rate and predicts that perceived direction becomes medially biased at low sound levels. Here, behavioral experiments find that softer sounds are perceived closer to midline than louder sounds, favoring rate-coding models of human sound localization. Analogously, visual depth perception, which is based on interocular disparity, depends on the contrast of the target. The similar results in hearing and vision suggest that the brain may use a canonical computation of location: encoding perceived location through population spike rate relative to baseline.


2011 ◽  
Vol 106 (1) ◽  
pp. 4-14 ◽  
Author(s):  
R. Michael Burger ◽  
Iwao Fukui ◽  
Harunori Ohmori ◽  
Edwin W. Rubel

Interaural time differences (ITDs) are the primary cue animals, including humans, use to localize low-frequency sounds. In vertebrate auditory systems, dedicated ITD processing neural circuitry performs an exacting task, the discrimination of microsecond differences in stimulus arrival time at the two ears by coincidence-detecting neurons. These neurons modulate responses over their entire dynamic range to sounds differing in ITD by mere hundreds of microseconds. The well-understood function of this circuitry in birds has provided a fruitful system to investigate how inhibition contributes to neural computation at the synaptic, cellular, and systems level. Our recent studies in the chicken have made significant progress in bringing together many of these findings to provide a cohesive picture of inhibitory function.


2000 ◽  
Vol 83 (4) ◽  
pp. 2300-2314 ◽  
Author(s):  
U. Koch ◽  
B. Grothe

To date, most physiological studies that investigated binaural auditory processing have addressed the topic rather exclusively in the context of sound localization. However, there is strong psychophysical evidence that binaural processing serves more than only sound localization. This raises the question of how binaural processing of spatial cues interacts with cues important for feature detection. The temporal structure of a sound is one such feature important for sound recognition. As a first approach, we investigated the influence of binaural cues on temporal processing in the mammalian auditory system. Here, we present evidence that binaural cues, namely interaural intensity differences (IIDs), have profound effects on filter properties for stimulus periodicity of auditory midbrain neurons in the echolocating big brown bat, Eptesicus fuscus. Our data indicate that these effects are partially due to changes in strength and timing of binaural inhibitory inputs. We measured filter characteristics for the periodicity (modulation frequency) of sinusoidally frequency modulated sounds (SFM) under different binaural conditions. As criteria, we used 50% filter cutoff frequencies of modulation transfer functions based on discharge rate as well as synchronicity of discharge to the sound envelope. The binaural conditions were contralateral stimulation only, equal stimulation at both ears (IID = 0 dB), and more intense at the ipsilateral ear (IID = −20, −30 dB). In 32% of neurons, the range of modulation frequencies the neurons responded to changed considerably comparing monaural and binaural (IID =0) stimulation. Moreover, in ∼50% of neurons the range of modulation frequencies was narrower when the ipsilateral ear was favored (IID = −20) compared with equal stimulation at both ears (IID = 0). In ∼10% of the neurons synchronization differed when comparing different binaural cues. Blockade of the GABAergic or glycinergic inputs to the cells recorded from revealed that inhibitory inputs were at least partially responsible for the observed changes in SFM filtering. In 25% of the neurons, drug application abolished those changes. Experiments using electronically introduced interaural time differences showed that the strength of ipsilaterally evoked inhibition increased with increasing modulation frequencies in one third of the cells tested. Thus glycinergic and GABAergic inhibition is at least one source responsible for the observed interdependence of temporal structure of a sound and spatial cues.


2007 ◽  
Vol 19 (6) ◽  
pp. 1468-1502 ◽  
Author(s):  
Răzvan V. Florian

The persistent modification of synaptic efficacy as a function of the relative timing of pre- and postsynaptic spikes is a phenomenon known as spike-timing-dependent plasticity (STDP). Here we show that the modulation of STDP by a global reward signal leads to reinforcement learning. We first derive analytically learning rules involving reward-modulated spike-timing-dependent synaptic and intrinsic plasticity, by applying a reinforcement learning algorithm to the stochastic spike response model of spiking neurons. These rules have several features common to plasticity mechanisms experimentally found in the brain. We then demonstrate in simulations of networks of integrate-and-fire neurons the efficacy of two simple learning rules involving modulated STDP. One rule is a direct extension of the standard STDP model (modulated STDP), and the other one involves an eligibility trace stored at each synapse that keeps a decaying memory of the relationships between the recent pairs of pre- and postsynaptic spike pairs (modulated STDP with eligibility trace). This latter rule permits learning even if the reward signal is delayed. The proposed rules are able to solve the XOR problem with both rate coded and temporally coded input and to learn a target output firing-rate pattern. These learning rules are biologically plausible, may be used for training generic artificial spiking neural networks, regardless of the neural model used, and suggest the experimental investigation in animals of the existence of reward-modulated STDP.


1991 ◽  
Vol 62 (6) ◽  
pp. 1211 ◽  
Author(s):  
Daniel H. Ashmead ◽  
DeFord L. Davis ◽  
Tracy Whalen ◽  
Richard D. Odom

2020 ◽  
Vol 32 (7) ◽  
pp. 1408-1429
Author(s):  
Jakub Fil ◽  
Dominique Chu

The multispike tempotron (MST) is a powersul, single spiking neuron model that can solve complex supervised classification tasks. It is also internally complex, computationally expensive to evaluate, and unsuitable for neuromorphic hardware. Here we aim to understand whether it is possible to simplify the MST model while retaining its ability to learn and process information. To this end, we introduce a family of generalized neuron models (GNMs) that are a special case of the spike response model and much simpler and cheaper to simulate than the MST. We find that over a wide range of parameters, the GNM can learn at least as well as the MST does. We identify the temporal autocorrelation of the membrane potential as the most important ingredient of the GNM that enables it to classify multiple spatiotemporal patterns. We also interpret the GNM as a chemical system, thus conceptually bridging computation by neural networks with molecular information processing. We conclude the letter by proposing alternative training approaches for the GNM, including error trace learning and error backpropagation.


2019 ◽  
Vol 23 ◽  
pp. 233121651984387 ◽  
Author(s):  
Stefan Zirn ◽  
Julian Angermeier ◽  
Susan Arndt ◽  
Antje Aschendorff ◽  
Thomas Wesarg

In users of a cochlear implant (CI) together with a contralateral hearing aid (HA), so-called bimodal listeners, differences in processing latencies between digital HA and CI up to 9 ms constantly superimpose interaural time differences. In the present study, the effect of this device delay mismatch on sound localization accuracy was investigated. For this purpose, localization accuracy in the frontal horizontal plane was measured with the original and minimized device delay mismatch. The reduction was achieved by delaying the CI stimulation according to the delay of the individually worn HA. For this, a portable, programmable, battery-powered delay line based on a ring buffer running on a microcontroller was designed and assembled. After an acclimatization period to the delayed CI stimulation of 1 hr, the nine bimodal study participants showed a highly significant improvement in localization accuracy of 11.6% compared with the everyday situation without the delay line ( p < .01). Concluding, delaying CI stimulation to minimize the device delay mismatch seems to be a promising method to increase sound localization accuracy in bimodal listeners.


Sign in / Sign up

Export Citation Format

Share Document