Entropy analysis of EMHD non-Newtonian fluid flow induced by Riga plate with slip and convective boundary phenomena

2020 ◽  
Vol 31 (05) ◽  
pp. 2050066 ◽  
Author(s):  
Mohamed Abd El-Aziz ◽  
Ahmed A. Afify

Our paper is consecrated to show the influence of variable fluid properties in EMHD non-Newtonian power-law fluid along a moving Riga plate. Slip velocity phenomenon is considered at the surface which is convectively heated. Entropy analysis is elaborated employing thermodynamic second relation. The governing nonlinear PDEs are altered into ODEs through adequate propinquity transformations which have been solved numerically via the shooting method with the fourth-order Runge–Kutta algorithm through Mathematica software (bvp4c). Characteristics of different basic parameters on velocity, temperature, entropy generation and Bejan number are highlighted through graphs. The outcomes exhibit that the minimum entropy rate in the flow system can be obtained either with rising viscosity parameter and slip parameter or declining dimensionless parameter and thermal conductivity parameter. The entropy rate is minimal for dilatant fluid when compared to pseudo plastic fluid with the most governing parameters. Contrast behavior on the thermal field is noticed for larger values of viscosity parameter and thermal conductivity parameter.

2020 ◽  
Vol 17 (2) ◽  
pp. 183-197
Author(s):  
Sahin Ahmed ◽  
G. C. Hazarika ◽  
Geeti Gogoi

In this paper we investigate numerically the influence of variable viscosity and thermal conductivity on MHD convective flow of heat and mass transfer problem over a moving non-isothermal vertical plate. The viscosity of the fluid and thermal conductivity are presumed to be the inverse linear functions of temperature. With the help of similarity substitution, the flow governing equations and boundary conditions are transformed into non-dimensional ordinary differential equations. The boundary value problem so obtained is then solved using MATLAB bvp4c solver. The effects of various parameters viz. magnetic parameter, viscosity parameter, thermal conductivity parameter, stratification parameter and Schmidt number on velocity, temperature and concentration are obtained numerically and presented trough graphs.  Also the coefficient of skin-friction, Nusselt number and Sherwood number are computed and displayed in tabular form. The effects of the viscosity parameter and thermal conductivity parameter in particular are prominent. This study has applications in a number of technological processes such as metal and polymer extrusion.


Author(s):  
Tasawar Hayat ◽  
Farhat Bibi ◽  
Ambreen Afsar Khan ◽  
Akbar Zaman ◽  
Ahmed Alsaedi

This article communicates peristalsis of Jeffrey material in curved geometry. Here, material has temperature-dependent thermal conductivity and viscosity. Mathematical modeling of an inclined magnetic field in curved configuration has been presented in this article. Irreversibility effects have been analyzed through entropy generation. Slip conditions are entertained both for velocity and thermal fields. Problem is first reduced in wave frame and then lubrication approach has been utilized. Numerical solution of dimensionless problem is obtained and important parameters of curiosity are examined. It is noticed that velocity enhances for higher viscosity whereas temperature decreases for higher thermal conductivity coefficient. Velocity of the flow is maximum for inclination of magnetic field to be zero and it is minimum for [Formula: see text] Heat transfer parameter enhances both for thermal conductivity parameter and Hartmann number. Temperature is high for curved configuration when compared with straight channel. It is observed that entropy remains unchanged in center of the channel and it is maximum near the channel walls. Entropy generation decays near the channel walls by higher viscosity and thermal conductivity parameters. However, entropy is more for higher inclination of magnetic field.


2015 ◽  
Vol 70 (3) ◽  
pp. 163-169 ◽  
Author(s):  
Ahmed M. Megahed

AbstractAn analysis was carried out to describe the problem of flow and heat transfer of Powell–Eyring fluid in boundary layers on an exponentially stretching continuous permeable surface with an exponential temperature distribution in the presence of heat flux and variable thermal conductivity. The governing partial differential equations describing the problem were transformed into a set of coupled non-linear ordinary differential equations and then solved with a numerical technique using appropriate boundary conditions for various physical parameters. The numerical solution for the governing non-linear boundary value problem is based on applying the shooting method over the entire range of physical parameters. The effects of various parameters like the thermal conductivity parameter, suction parameter, dimensionless Powell–Eyring parameters and the Prandtl number on the flow and temperature profiles as well as on the local skin-friction coefficient and the local Nusselt number are presented and discussed. In this work, special attention was given to investigate the effect of the thermal conductivity parameter on the velocity and temperature fields above the sheet in the presence of heat flux. The numerical results were also validated with results from a previously published work on various special cases of the problem, and good agreements were seen.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yong-Min Li ◽  
M. Ijaz Khan ◽  
Sohail A. Khan ◽  
Sami Ullah Khan ◽  
Zahir Shah ◽  
...  

AbstractEntropy optimization in convective viscous fluids flow due to a rotating cone is explored. Heat expression with heat source/sink and dissipation is considered. Irreversibility with binary chemical reaction is also deliberated. Nonlinear system is reduced to ODEs by suitable variables. Newton built in shooting procedure is adopted for numerical solution. Salient features velocity filed, Bejan number, entropy rate, concentration and temperature are deliberated. Numerical outcomes for velocity gradient and mass and heat transfer rates are displayed through tables. Assessments between the current and previous published outcomes are in an excellent agreement. It is noted that velocity and temperature show contrasting behavior for larger variable viscosity parameter. Entropy rate and Bejan number have reverse effect against viscosity variable. For rising values of thermal conductivity variable both Bejan number and entropy optimization have similar effect.


2014 ◽  
Vol 18 (2) ◽  
pp. 431-442 ◽  
Author(s):  
Mohsen Torabi ◽  
Hessameddin Yaghoobi

Heat transfer in a straight fin with a step change in thickness and variable thermal conductivity which is losing heat by convection to its surroundings is developed via differential transformation method (DTM) and variational iteration method (VIM). In this study, we compare DTM and VIM results, with those of homotopy perturbation method (HPM) and an accurate numerical solution to verify the accuracy of the proposed methods. As an important result, it is depicted that the DTM results are more accurate in comparison with those obtained by VIM and HPM. After these verifications the effects of parameters such as thickness ratio, ?, dimensionless fin semi thickness,?, length ratio, ?, thermal conductivity parameter, ?, Biot number, Bi, on the temperature distribution are illustrated and explained.


2020 ◽  
Vol 21 (3) ◽  
pp. 399-403
Author(s):  
A.A. Druzhinin ◽  
I.P. Ostrovskii ◽  
Yu.M. Khoverko ◽  
N.S. Liakh-Kaguy

The paper deals with studies of thermoelectric properties for Si1-xGex (x=0.01-0.05) whiskers doped with boron during their growth by CVD method. Temperature dependences of the resistance and the Seebeck coefficient for Si1-xGex whiskers were measured in the temperature range 275–550 K. A method for determination of thermoelectric parameters of the whisker was proposed with use of the whisker joints, which allows us to define a ratio of Seebeck coefficient to thermal conductivity a/k. Taking into account the obtained values of Seebeck coefficient, the whisker conductance and estimated values of thermal conductivity, parameter ZT was calculated for the whiskers and consists of 0.15 for T=200oC. The obtained value of ZT is in good coincidence with literature data for hop pressed Si-Ge nanocomposites. The humidity sensor was designed base on Si-Ge whiskers.


2017 ◽  
Vol 2 (2) ◽  
Author(s):  
Amos S Idowu ◽  
Abdulwaheed Jimoh

The effects of Kuvshinshiki fluid on Magnetohydrodynamic (MHD) heat and mass transfer flow over a vertical porous plate with chemical reaction of nth order and thermal conductivity was carried out. The governing partial differential equations were solved numerically using implicit Crank-Nicolson method. A parametric study was performed to illustrate the impact of visco-elastic parameter, radiation parameter, thermal conductivity parameter, magnetic parameter, Prandtl number on the velocity,temperature and concentration profiles.The results were presented graphically with tabular presentations of the skin-friction,rate of heat and mass transfer which were all computed and discussed for different values of parameters of the problem. The numerical results revealed that the visco- elastic of Kuvshinshiki fluid type is growing as concentration profile increases, while the velocity and temperature profile falls ,then the radiation and thermal conductivity were growing as velocity and temperature increases. Also Sherwood number decreases as radiation increases but Sherwood number remains unchanged as thermal conductivity growing.


2019 ◽  
Vol 24 (3) ◽  
pp. 539-548
Author(s):  
M. Ferdows ◽  
M.Z.I. Bangalee ◽  
D. Liu

Abstract The problem of exponential law of steady, incompressible fluid flow in boundary layer and heat transfer are studied in an electrically conducting fluid over a semi-infinite vertical plate assuming the variable thermal conductivity in the presence of a uniform magnetic field. The governing system of equations including the continuity equation, momentum equation and energy equation have been transformed into nonlinear coupled ordinary differential equations using appropriate similarity variables. All the numerical and graphical solutions are obtained through the use of Maple software. The solutions are found to be dependent on three dimensionless parameters including the magnetic field parameter M, thermal conductivity parameter β and Prandtl number Pr. Representative velocity and temperature profiles are presented at various values of the governing parameters. The skin-friction coefficient and the rate of heat transfer are also calculated for different values of the parameters.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdulaziz Alsenafi ◽  
O. Anwar Bég ◽  
M. Ferdows ◽  
Tasveer A. Bég ◽  
A. Kadir

AbstractA mathematical model is developed for stagnation point flow toward a stretching or shrinking sheet of liquid nano-biofilm containing spherical nano-particles and bioconvecting gyrotactic micro-organisms. Variable transport properties of the liquid (viscosity, thermal conductivity, nano-particle species diffusivity) and micro-organisms (species diffusivity) are considered. Buongiorno’s two-component nanoscale model is deployed and spherical nanoparticles in a dilute nanofluid considered. Using a similarity transformation, the nonlinear systems of partial differential equations is converted into nonlinear ordinary differential equations. These resulting equations are solved numerically using a central space finite difference method in the CodeBlocks Fortran platform. Graphical plots for the distribution of reduced skin friction coefficient, reduced Nusselt number, reduced Sherwood number and the reduced local density of the motile microorganisms as well as the velocity, temperature, nanoparticle volume fraction and the density of motile microorganisms are presented for the influence of wall velocity power-law index (m), viscosity parameter $$({c}_{2})$$ ( c 2 ) , thermal conductivity parameter (c4), nano-particle mass diffusivity (c6), micro-organism species diffusivity (c8), thermophoresis parameter $$(Nt)$$ ( N t ) , Brownian motion parameter $$(Nb)$$ ( N b ) , Lewis number $$(Le)$$ ( L e ) , bioconvection Schmidt number $$(Sc)$$ ( S c ) , bioconvection constant (σ) and bioconvection Péclet number $$(Pe)$$ ( P e ) . Validation of the solutions via comparison related to previous simpler models is included. Further verification of the general model is conducted with the Adomian decomposition method (ADM). Extensive interpretation of the physics is included. Skin friction is elevated with viscosity parameter ($${\mathrm{c}}_{2})$$ c 2 ) whereas it is suppressed with greater Lewis number and thermophoresis parameter. Temperatures are elevated with increasing thermal conductivity parameter ($${\mathrm{c}}_{4})$$ c 4 ) whereas Nusselt numbers are reduced. Nano-particle volume fraction (concentration) is enhanced with increasing nano-particle mass diffusivity parameter ($${c}_{6}$$ c 6 ) whereas it is markedly reduced with greater Lewis number (Le) and Brownian motion parameter (Nb). With increasing stretching/shrinking velocity power-law exponent ($$m),$$ m ) , skin friction is decreased whereas Nusselt number and Sherwood number are both elevated. Motile microorganism density is boosted strongly with increasing micro-organism diffusivity parameter ($${\mathrm{c}}_{8}$$ c 8 ) and Brownian motion parameter (Nb) but reduced considerably with greater bioconvection Schmidt number (Sc) and bioconvection Péclet number (Pe). The simulations find applications in deposition processes in nano-bio-coating manufacturing processes.


Sign in / Sign up

Export Citation Format

Share Document