Baicalein Induces Beclin 1- and Extracellular Signal-Regulated Kinase-Dependent Autophagy in Ovarian Cancer Cells

2017 ◽  
Vol 45 (01) ◽  
pp. 123-136 ◽  
Author(s):  
Ya-Fang Wang ◽  
Yu-Lian Xu ◽  
Zheng-Hai Tang ◽  
Ting Li ◽  
Le-Le Zhang ◽  
...  

Baicalein (BA), one of the major compounds isolated from the root of Scutellaria baicalensis Gerogi, exhibits various pharmacological effects, such as anti-oxidant, anti-inflammatory, and anticancer effects. In this study, we found that BA reduced cell viability and increased apoptosis in ovarian cancer cells. Treatment of cells with BA enhanced microtubule-associated protein light chain 3-II (LC3-II) expression, acidic vesicular organelle and GFP-LC3 fluorescence dot accumulation. Combined treatment with chloroquine and BA apparently reduced cell viability and increased the cleavage of poly (ADPribose) polymerase (PARP) in both HEY and A2780 ovarian cancer cell lines, indicating that BA induces a protective autophagy in these cells. Knockdown of Beclin 1 by siRNA remarkably decreased BA-induced LC3-II lipidation. In addition, we found an increase in the phosphorylation of extracellular signal-regulated kinase (ERK, Thr202/Thr204) and AKT (Ser473) after BA treatment, and inhibition of ERK activation by the pharmacological inhibitor U0126 or ERK siRNA blocked BA-induced autophagy. Taken together, these results suggest that BA induces Beclin 1- and ERK-dependent autophagy in ovarian cancer cells.

2016 ◽  
Vol 64 (4) ◽  
pp. 950.1-950 ◽  
Author(s):  
SH Afroze ◽  
DC Zawieja ◽  
R Tobin ◽  
C Peddaboina ◽  
MK Newell-Rogers ◽  
...  

ObjectiveCinobufotalin (CINO), a cardiotonic steroid (CTS) or bufadienolide, is extracted from the skin secretions of the traditional Chinese medicine giant toads (Chan su). CINO has been used as a cardiotonic, diuretic and a hemostatic agent. Previously we have shown that CINO inhibits the cytotrophoblast cell function. Recently other study has shown that CINO inhibits A549, a lung cancer cell function. In this study, we assessed the effect of CINO on three different ovarian cancer cell lines; SK-OV-3, CRL-1978 and CRL-11731 to confirm whether the effect of CINO is cell specific.Study DesignWe evaluated the effect of CINO on three ovarian cancer cells SK-OV-3, CRL-1978, and CRL-11731 function in vitro. Each Cell lines were treated with different concentrations of CINO (0.1, 1, 5 and 10 µM). For each cell line cell proliferation, migration and invasion were measured by using a CellTiter Assay (Promega), Cytoselect Assay (Cell Biolabs) and by using a FluoroBlock Assay (BD) respectively. Proliferating Cell Nuclear Antigen (PCNA) was also evaluated in cell lysates of CINO treated these 3 ovarian cancer cells by western blot analysis. Cell Cycle arrest and Cell viability were determined by fluorescence-activated cell sorting (FACS) analysis. We also performed Annexin V staining on CINO treated these 3 ovarian cancer cell lines by immunofluorescence to evaluate the pro-apoptotic protein expression. In addition mitochondrial membrane potential has also been measured for all these 3 ovarian cell lines after CINO treatment using MMP kit, by FACS analysis.ResultsConcentration of CINO at 0.5 µM inhibit SK-OV-3, CRL-1978, and CRL-11731 ovarian cancer cells proliferation, migration and invasion without cell death and loss of cell viability but cell viability differs for each cell line. Each cell lines differ in response to CINO doses for PCNA expression as well as Annexin V pro-apoptotic protein expression. CINO decreases mitochondrial membrane potential for SK-OV-3 but for CRL-1978 and CRL-11731 increases in response to CINO treatment.ConclusionCINO is cell specific, as each cancer cell line responds differently. These data demonstrate that the mode of action of CINO is different on these 3 types of ovarian cancer cells.


2019 ◽  
Vol 21 (1) ◽  
pp. 39-44
Author(s):  
Somayeh Hashemi-Sheikhshabani ◽  
Zeinab Amini-Farsani ◽  
Mehdi Shamsara ◽  
Zahra Sajadpoor ◽  
Mohammad Hossein Sangtarash ◽  
...  

Background and aims: Platinum resistance has been one of the most important problems in the management of ovarian cancer. The effects of various chemotherapeutic agents are limited in patients with platinum resistance. Therefore, developing new anticancer drugs that can improve the effect of currently used cytostatics is critical. The current study investigated the effects of valproic acid (VPA) alone and in combination with cisplatin on ovarian cancer cells. Methods: In this experimental study, the human ovarian cancer cell lines (A2780-S and A2780-CP) were grown in RPMI-1640 medium in appropriate culture conditions. The cells were treated with various concentrations of cisplatin (0.15-400 µg/mL) or VPA (10-2000 µg/mL) and were incubated for 24, 48, and 72 hours. Moreover, A2780 cells were co-treated with different concentrations of cisplatin and VPA for 48 hours. Afterward, cell viability was investigated using MTT assay. GraphPad Prism statistical software was used for the data analysis and ANOVA and Duncan’s test were conducted. Results: A dose- and time-dependent reduction was observed in cell viability following the treatment with cisplatin or VPA. Moreover, cotreatment of the A2780 cells with cisplatin and VPA resulted in a significantly greater inhibition of cell viability compared to the treatment with either agent alone. Conclusion: Overall, it can be argued that VPA does not only cause inhibition of proliferation and induction of apoptosis in ovarian cancer cells but also helps to enhance the antiproliferative effects of cisplatin and results in the increased susceptibility to cisplatin in resistant cells. VPA may therefore be used to treat cancer in the future.


2020 ◽  
Vol 19 (2) ◽  
pp. 206-210
Author(s):  
Feng Chen ◽  
Bei Zhang

Lupeol exhibits multiple pharmacological activities including, anticancerous, anti-inflammatory, and antioxidant. The aim of this study was to explore the anticancerous activity of lupeol on ovarian cancer cells and examine its mechanism of action. To this end, increasing concentrations of lupeol on cell viability, cell cycle, and apoptosis in Caov-3 cells were evaluated. Lupeol inhibited cell viability, induced G1 phase arrest in cell cycle, increased cell apoptosis, and inhibited the ratio of phospho-Akt/protein kinase B and phospho-mammalian target of rapamycin/mammalian target of rapamycin. In conclusion, these data suggest that lupeol may play a therapeutic role in ovarian cancer.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1749
Author(s):  
Jing-Jing Wang ◽  
Michelle Kwan-Yee Siu ◽  
Yu-Xin Jiang ◽  
Thomas Ho-Yin Leung ◽  
David Wai Chan ◽  
...  

Programmed cell death 1 ligand (PD-L1) blockade has been used therapeutically in the treatment of ovarian cancer, and potential combination treatment approaches are under investigation to improve the treatment response rate. The increased dependence on glutamine is widely observed in various type of tumors, including ovarian cancer. Kidney-type glutaminase (GLS), as one of the isotypes of glutaminase, is found to promote tumorigenesis. Here, we have demonstrated that the combined treatment with GLS inhibitor 968 and PD-L1 blockade enhances the immune response against ovarian cancer. Survival analysis using the Kaplan–Meier plotter dataset from ovarian cancer patients revealed that the expression level of GLS predicts poor survival and correlates with the immunosuppressive microenvironment of ovarian cancer. 968 inhibits the proliferation of ovarian cancer cells and enhances granzyme B secretion by CD8+ T cells as detected by XTT assay and flow cytometry, respectively. Furthermore, 968 enhances the apoptosis-inducing ability of CD8+ T cells toward cancer cells and improves the treatment effect of anti-PD-L1 in treating ovarian cancer as assessed by Annexin V apoptosis assay. In vivo studies demonstrated the prolonged overall survival upon combined treatment of 968 with anti-PD-L1 accompanied by increased granzyme B secretion by CD4+ and CD8+ T cells isolated from ovarian tumor xenografts. Additionally, 968 increases the infiltration of CD3+ T cells into tumors, possibly through enhancing the secretion of CXCL10 and CXCL11 by tumor cells. In conclusion, our findings provide a novel insight into ovarian cancer cells influence the immune system in the tumor microenvironment and highlight the potential clinical implication of combination of immune checkpoints with GLS inhibitor 968 in treating ovarian cancer.


Sign in / Sign up

Export Citation Format

Share Document