scholarly journals Vacuum Brans–Dicke theory in the Jordan and Einstein frames: Can they be distinguished by lensing?

2020 ◽  
Vol 35 (37) ◽  
pp. 2050308 ◽  
Author(s):  
Ramil N. Izmailov ◽  
Ramis Kh. Karimov ◽  
Alexander A. Potapov ◽  
Kamal K. Nandi

Vacuum Brans-Dicke (BD) theory continues to receive widespread attention since it is consistent with solar and cosmological experiments. The theory can be self-consistently described in two frames, the Jordan frame (JF) and the conformally rescaled Einstein frame (EF), the transformations providing an easy passage from one frame to the other at the level of actions and solutions. While coordinate transformations do not change curvature properties, conformal transformations do change them leading to corresponding changes in the numerical values of observables. A previous article by Bhadra et al.[Formula: see text] did exemplify this change between JF and EF using the diagnostic of second-order light deflection. This important work leaves room for further improvements on two points, which we do here. First, the measurement of second-order effect faced technically unsurmountable difficulties even around the Sun, hence actually abandoned. Second, the comparison of quantitative values between JF and EF should be based on a common value of [Formula: see text] connecting the two frames. Keeping these in mind, we investigate a technically easier diagnostic, viz., the weak field lensing (WFL) and compare the quantitative changes at common [Formula: see text] to show that the two frames can indeed be distinguished by lensing experiments. Specifically, the predictions of light deflection, image position, total magnification and magnification factor are computed in the EF and compared with those recently obtained (by Gao et al.[Formula: see text]) directly in the JF BD class I solution. The use of the value of BD coupling constant [Formula: see text], suggested by the Cassini spacecraft solar experiment, reveals that an exceptionally high degree of accuracy is needed to experimentally rule out one or the other frame by means of WFL measurements.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Alina Khaybullina ◽  
Ramil Izmailov ◽  
Kamal K. Nandi ◽  
Carlo Cattani

We will confront some static spherically symmetric vacuum Brans-Dicke solutions in the Jordan and Einstein Frames with the Robertson parameters. While the regular solution in the vacuum Einstein theory is just the Schwarzschild black hole, the same in the Jordan frame Brans-Dicke theory is shown to represent not a black hole but a traversable wormhole. But, in this case, the valid range ofωbecomes too narrow to yield the observed weak field Robertson parameters at the positive mass mouth. The corresponding solution in the Einstein frame also provides a regular wormhole, and it yields the correct parametric values but only up to “one and half order.” We argue that a second-order contribution can in principle distinguish between the signatures of the regular wormhole and the singular Buchdahl solution in the Einstein frame. Thus, at the level of regular solutions, Brans-Dicke theory in each frame predicts effects very different from those of Einstein's theory. To our knowledge, these theoretical distinctions seem not to have received adequate attention so far.


2015 ◽  
Vol 36 (4) ◽  
pp. 228-236 ◽  
Author(s):  
Janko Međedović ◽  
Boban Petrović

Abstract. Machiavellianism, narcissism, and psychopathy are personality traits understood to be dispositions toward amoral and antisocial behavior. Recent research has suggested that sadism should also be added to this set of traits. In the present study, we tested a hypothesis proposing that these four traits are expressions of one superordinate construct: The Dark Tetrad. Exploration of the latent space of four “dark” traits suggested that the singular second-order factor which represents the Dark Tetrad can be extracted. Analysis has shown that Dark Tetrad traits can be located in the space of basic personality traits, especially on the negative pole of the Honesty-Humility, Agreeableness, Conscientiousness, and Emotionality dimensions. We conclude that sadism behaves in a similar manner as the other dark traits, but it cannot be reduced to them. The results support the concept of “Dark Tetrad.”


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Osama Moaaz ◽  
Choonkil Park ◽  
Elmetwally M. Elabbasy ◽  
Waed Muhsin

AbstractIn this work, we create new oscillation conditions for solutions of second-order differential equations with continuous delay. The new criteria were created based on Riccati transformation technique and comparison principles. Furthermore, we obtain iterative criteria that can be applied even when the other criteria fail. The results obtained in this paper improve and extend the relevant previous results as illustrated by examples.


1995 ◽  
Vol 74 (6) ◽  
pp. 2665-2684 ◽  
Author(s):  
Y. Kondoh ◽  
Y. Hasegawa ◽  
J. Okuma ◽  
F. Takahashi

1. A computational model accounting for motion detection in the fly was examined by comparing responses in motion-sensitive horizontal system (HS) and centrifugal horizontal (CH) cells in the fly's lobula plate with a computer simulation implemented on a motion detector of the correlation type, the Reichardt detector. First-order (linear) and second-order (quadratic nonlinear) Wiener kernels from intracellularly recorded responses to moving patterns were computed by cross correlating with the time-dependent position of the stimulus, and were used to characterize response to motion in those cells. 2. When the fly was stimulated with moving vertical stripes with a spatial wavelength of 5-40 degrees, the HS and CH cells showed basically a biphasic first-order kernel, having an initial depolarization that was followed by hyperpolarization. The linear model matched well with the actual response, with a mean square error of 27% at best, indicating that the linear component comprises a major part of responses in these cells. The second-order nonlinearity was insignificant. When stimulated at a spatial wavelength of 2.5 degrees, the first-order kernel showed a significant decrease in amplitude, and was initially hyperpolarized; the second-order kernel was, on the other hand, well defined, having two hyperpolarizing valleys on the diagonal with two off-diagonal peaks. 3. The blockage of inhibitory interactions in the visual system by application of 10-4 M picrotoxin, however, evoked a nonlinear response that could be decomposed into the sum of the first-order (linear) and second-order (quadratic nonlinear) terms with a mean square error of 30-50%. The first-order term, comprising 10-20% of the picrotoxin-evoked response, is characterized by a differentiating first-order kernel. It thus codes the velocity of motion. The second-order term, comprising 30-40% of the response, is defined by a second-order kernel with two depolarizing peaks on the diagonal and two off-diagonal hyperpolarizing valleys, suggesting that the nonlinear component represents the power of motion. 4. Responses in the Reichardt detector, consisting of two mirror-image subunits with spatiotemporal low-pass filters followed by a multiplication stage, were computer simulated and then analyzed by the Wiener kernel method. The simulated responses were linearly related to the pattern velocity (with a mean square error of 13% for the linear model) and matched well with the observed responses in the HS and CH cells. After the multiplication stage, the linear component comprised 15-25% and the quadratic nonlinear component comprised 60-70% of the simulated response, which was similar to the picrotoxin-induced response in the HS cells. The quadratic nonlinear components were balanced between the right and left sides, and could be eliminated completely by their contralateral counterpart via a subtraction process. On the other hand, the linear component on one side was the mirror image of that on the other side, as expected from the kernel configurations. 5. These results suggest that responses to motion in the HS and CH cells depend on the multiplication process in which both the velocity and power components of motion are computed, and that a putative subtraction process selectively eliminates the nonlinear components but amplifies the linear component. The nonlinear component is directionally insensitive because of its quadratic non-linearity. Therefore the subtraction process allows the subsequent cells integrating motion (such as the HS cells) to tune the direction of motion more sharply.


Universe ◽  
2020 ◽  
Vol 6 (10) ◽  
pp. 171
Author(s):  
Folkert Kuipers ◽  
Xavier Calmet

In this paper, we discuss singularity theorems in quantum gravity using effective field theory methods. To second order in curvature, the effective field theory contains two new degrees of freedom which have important implications for the derivation of these theorems: a massive spin-2 field and a massive spin-0 field. Using an explicit mapping of this theory from the Jordan frame to the Einstein frame, we show that the massive spin-2 field violates the null energy condition, while the massive spin-0 field satisfies the null energy condition, but may violate the strong energy condition. Due to this violation, classical singularity theorems are no longer applicable, indicating that singularities can be avoided, if the leading quantum corrections are taken into account.


1904 ◽  
Vol 24 ◽  
pp. 233-239 ◽  
Author(s):  
Hugh Marshall

When thio-urea is treated with suitable oxidising agents in presence of acids, salts are formed corresponding to the general formula (CSN2H4)2X2:—Of these salts the di-nitrate is very sparingly soluble, and is precipitated on the addition of nitric acid or a nitrate to solutions of the other salts. The salts, as a class, are not very stable, and their solutions decompose, especially on warming, with formation of sulphur, thio-urea, cyanamide, and free acid. A corresponding decomposition results immediately on the addition of alkali, and this constitutes a very characteristic reaction for these salts.


1986 ◽  
Vol 102 (3-4) ◽  
pp. 253-257 ◽  
Author(s):  
B. J. Harris

SynopsisIn an earlier paper [6] we showed that if q ϵ CN[0, ε) for some ε > 0, then the Titchmarsh–Weyl m(λ) function associated with the second order linear differential equationhas the asymptotic expansionas |A| →∞ in a sector of the form 0 < δ < arg λ < π – δ.We show that if the real valued function q admits the expansionin a neighbourhood of 0, then


1982 ◽  
Vol 47 (1) ◽  
pp. 191-196 ◽  
Author(s):  
George Boolos

Let ‘ϕ’, ‘χ’, and ‘ψ’ be variables ranging over functions from the sentence letters P0, P1, … Pn, … of (propositional) modal logic to sentences of P(eano) Arithmetic), and for each sentence A of modal logic, inductively define Aϕ by[and similarly for other nonmodal propositional connectives]; andwhere Bew(x) is the standard provability predicate for PA and ⌈F⌉ is the PA numeral for the Gödel number of the formula F of PA. Then for any ϕ, (−□⊥)ϕ = −Bew(⌈⊥⌉), which is the consistency assertion for PA; a sentence S is undecidable in PA iff both and , where ϕ(p0) = S. If ψ(p0) is the undecidable sentence constructed by Gödel, then ⊬PA (−□⊥→ −□p0 & − □ − p0)ψ and ⊢PA(P0 ↔ −□⊥)ψ. However, if ψ(p0) is the undecidable sentence constructed by Rosser, then the situation is the other way around: ⊬PA(P0 ↔ −□⊥)ψ and ⊢PA (−□⊥→ −□−p0 & −□−p0)ψ. We call a sentence S of PA extremely undecidable if for all modal sentences A containing no sentence letter other than p0, if for some ψ, ⊬PAAψ, then ⊬PAAϕ, where ϕ(p0) = S. (So, roughly speaking, a sentence is extremely undecidable if it can be proved to have only those modal-logically characterizable properties that every sentence can be proved to have.) Thus extremely undecidable sentences are undecidable, but neither the Godel nor the Rosser sentence is extremely undecidable. It will follow at once from the main theorem of this paper that there are infinitely many inequivalent extremely undecidable sentences.


Author(s):  
B. Choudhary

Integral transformations analogous to the Nörlund means have been introduced and investigated by Kuttner, Knopp and Vanderburg(6), (5), (4). It is known that with any regular Nörlund mean (N, p) there is associated a functionregular for |z| < 1, and if we have two Nörlund means (N, p) and (N, r), where (N, pr is regular, while the function is regular for |z| ≤ 1 and different) from zero at z = 1, then q(z) = r(z)p(z) belongs to a regular Nörlund mean (N, q). Concerning Nörlund means Peyerimhoff(7) and Miesner (3) have recently obtained the relation between the convergence fields of the Nörlund means (N, p) and (N, r) on the one hand and the convergence field of the Nörlund mean (N, q) on the other hand.


1961 ◽  
Vol 3 (1) ◽  
pp. 28-44 ◽  
Author(s):  
W. G. V. Rosser
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document