The gravitational energy density of the Universe

2021 ◽  
pp. 2150125
Author(s):  
J. B. Formiga ◽  
V. R. Gonçalves

The teleparallel gravitational energy–momentum tensor density of the Friedmann–Lemaître–Robertson–Walker spacetime is calculated and analyzed: it is decomposed into density, isotropic pressure, non-isotropic pressures, and the heat-flux 4-vector; the antisymmetric part is decomposed into “electric” and “magnetic” components. It is found that the gravitational field obeys a radiation-like equation of state, the antisymmetric part does not contribute to the gravitational energy–momentum; and the total energy density, the non-isotropic pressures and the heat-flux 4-vector vanish for spatially flat universes. Finally, it is verified that the field equations have a well-defined vacuum.

2003 ◽  
Vol 12 (05) ◽  
pp. 925-939 ◽  
Author(s):  
M. K. MAK ◽  
T. HARKO

We consider the dynamics of a causal bulk viscous cosmological fluid filled flat homogeneous Universe in the framework of the Brans–Dicke theory. Three classes of exact solutions of the field equations are obtained and the behavior of the physical parameters is considered in detail. In this model the energy density associated to the Brans–Dicke scalar field is of the same order of magnitude as the matter energy density. The inclusion of the bulk viscous pressure term in the matter energy-momentum tensor leads to a non-decelerating evolution of the Universe.


2017 ◽  
Vol 32 (28) ◽  
pp. 1750151 ◽  
Author(s):  
M. Sharif ◽  
Aisha Siddiqa

We study the evolution of viscous modified Chaplygin gas (MCG) interacting with f(R, T) gravity in flat FRW universe, where T is the trace of energy–momentum tensor. The field equations are formulated for a particular model f(R, T) = R + 2[Formula: see text]T and constraints for the conservation of energy–momentum tensor are obtained. We investigate the behavior of total energy density, pressure and equation of state (EoS) parameter for emergent, intermediate as well as logamediate scenarios of the universe with two interacting models. It is found that the EoS parameter lies in the matter-dominated or quintessence era for all the three scenarios while the bulk viscosity enhances the expansion for the intermediate and logamediate scenarios.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Prasenjit Paul ◽  
Rikpratik Sengupta

It was first observed at the end of the last century that the universe is presently accelerating. Ever since, there have been several attempts to explain this observation theoretically. There are two possible approaches. The more conventional one is to modify the matter part of the Einstein field equations, and the second one is to modify the geometry part. We shall consider two phenomenological models based on the former, more conventional approach within the context of general relativity. The phenomenological models in this paper consider a Λ term firstly a function of a¨/a and secondly a function of ρ, where a and ρ are the scale factor and matter energy density, respectively. Constraining the free parameters of the models with the latest observational data gives satisfactory values of parameters as considered by us initially. Without any field theoretic interpretation, we explain the recent observations with a dynamical cosmological constant.


2003 ◽  
Vol 12 (06) ◽  
pp. 1095-1112 ◽  
Author(s):  
METIN ARIK ◽  
OZGUR DELICE

We present cylindrically symmetric, static solutions of the Einstein field equations around a line singularity such that the energy momentum tensor corresponds to infinitely thin photonic shells. Positivity of the energy density of the thin shell and the line singularity is discussed. It is also shown that thick shells containing mostly radiation are possible in a numerical solution.


2018 ◽  
Vol 15 (10) ◽  
pp. 1850168 ◽  
Author(s):  
Rashid Zia ◽  
Dinesh Chandra Maurya ◽  
Anirudh Pradhan

In this paper, spatially homogeneous and anisotropic Bianchi type-[Formula: see text] dark energy (DE) cosmological transit models with string fluid source in [Formula: see text] gravity [T. Harko et al., Phys. Rev. D 84 (2011) 024020], where [Formula: see text] is the Ricci scalar and [Formula: see text] the trace of the stress energy–momentum tensor, have been studied in the context of early time decelerating and late-time accelerating expansion of the Universe as suggested by the recent observations. The exact solutions of the field equations are obtained first by using generalized hybrid expansion law (HEL) [Formula: see text] which yields a time-dependent deceleration parameter [Formula: see text] and second by considering the metric coefficient [Formula: see text]. By using recent constraints from supernovae type-Ia union data [Cunha, arXiv:0811.2379[astro-ph]], we obtain [Formula: see text] and [Formula: see text] for transit model [Formula: see text]. The Universe has an initial singularity and is anisotropic closed and it tends to be flat at the late time, i.e. our Universe is in accelerating expansion. Our model shows a phase transition property from decelerating to accelerating. It is remarkable to mention here that our Universe is homogeneous and anisotropic in the early phase whereas it becomes homogeneous and isotropic for [Formula: see text]. We have also discussed the stability of the background solution with respect to perturbations of the metric along with the properties of future singularities in the Universe dominated by DE including the phantom-type fluid. Various physical and dynamical parameters are also calculated and investigated in terms of time and redshift both.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Gaurav N. Gadbail ◽  
Simran Arora ◽  
P. K. Sahoo

AbstractBulk viscosity is the only viscous influence that can change the background dynamics in a homogeneous and isotropic universe. In the present work, we analyze the bulk viscous cosmological model with the bulk viscosity coefficient of the form $$\zeta =\zeta _0+\zeta _1H+\zeta _2\left( \frac{\dot{H}}{H}+H\right) $$ ζ = ζ 0 + ζ 1 H + ζ 2 H ˙ H + H where, $$\zeta _0$$ ζ 0 , $$\zeta _1$$ ζ 1 and $$\zeta _2$$ ζ 2 are bulk viscous parameters, and H is the Hubble parameter. We investigate the impact of the bulk viscous parameter on dynamics of the universe in the recently proposed Weyl-type f(Q, T) gravity, where Q is the non-metricity, and T is the trace of the matter energy–momentum tensor. The exact solutions to the corresponding field equations are obtained with the viscous fluid and the linear model of the form $$f(Q, T)=\alpha Q+\frac{\beta }{6\kappa ^2}T$$ f ( Q , T ) = α Q + β 6 κ 2 T , where $$\alpha $$ α and $$\beta $$ β are model parameters. Further, we constrain the model parameters using the 57 points Hubble dataset the recently released 1048 points Pantheon sample and the combination Hz + BAO + Pantheon, which shows our model is good congeniality with observations. We study the possible scenarios and the evolution of the universe through the deceleration parameter, the equation of state (EoS) parameter, the statefinder diagnostics, and the Om diagnostics. It is observed that the universe exhibits a transition from a decelerated to an accelerated phase of the universe under certain constraints of model parameters.


2017 ◽  
Vol 14 (06) ◽  
pp. 1750097 ◽  
Author(s):  
Pradyumn Kumar Sahoo ◽  
Parbati Sahoo ◽  
Binaya Kumar Bishi

The objective of this work enclosed with the study of spatially homogeneous anisotropic Bianchi type-I universe in [Formula: see text] gravity (where [Formula: see text] is the Ricci scalar and [Formula: see text] is the trace of stress energy momentum tensor) in two different cases viz. [Formula: see text] and [Formula: see text] with bulk viscosity matter content. In this study, we consider a time varying deceleration parameter (DP), which generates an accelerating universe to obtain the exact solution of the field equations. The physical and kinematical properties of both the models are discussed in detail for the future evolution of the universe. We have explored the nature of WEC, DEC, SEC and energy density for both the cases. We have found that both the models, with bulk viscosity matter component, show an acceleration of the universe. We have also shown that the cosmic jerk parameter is compatible with the three kinematical data sets.


Author(s):  
R. K. Tiwari ◽  
D. Sofuoğlu ◽  
A. Beesham

In this study, Friedmann–Robertson–Walker space-time filled with a perfect fluid in [Formula: see text] modified theory, where [Formula: see text] is the Ricci scalar and [Formula: see text] is the trace of the energy–momentum tensor of matter, has been considered. The investigation of the phase transition of the universe from the decelerating expansion phase to the accelerating one has been made by adopting a special form of the varying deceleration parameter that is inversely proportional to the Hubble parameter. The exact solution of the field equations has been derived. The kinematic and dynamical quantities of the model have been obtained and their evolutions have been discussed by means of their graphs. The statefinder diagnostic has been used and the age of the universe has been computed for testing the validity of the model. It has been shown that the dominant energy of the model is ordinary matter which behaves as the SCDM model at the beginning and it is a quintessence like fluid which behaves as the [Formula: see text]CDM model at late times.


2006 ◽  
Vol 21 (21) ◽  
pp. 4373-4406 ◽  
Author(s):  
E. I. GUENDELMAN ◽  
A. B. KAGANOVICH

There exist field theory models where the fermionic energy–momentum tensor contains a term proportional to [Formula: see text] which may contribute to the dark energy. We show that this new field theory effect can be achieved in the Two Measures Field Theory (TMT) in the cosmological context. TMT is an alternative gravity and matter field theory where the gravitational interaction of fermionic matter is reduced to that of General Relativity when the energy density of the fermion matter is much larger than the dark energy density. In this case also the fifth force problem is solved automatically. In the opposite limit, where the magnitudes of fermionic energy density and scalar field dark energy density become comparable, nonrelativistic fermions can participate in the cosmological expansion in a very unusual manner. Some of the features of such Cosmo-Low-Energy-Physics (CLEP) states are studied in a toy model of the late time universe filled with homogeneous scalar field and uniformly distributed nonrelativistic neutrinos, and the following results are obtained: neutrino mass increases as m ∝ a3/2 (a is the scale factor); the proportionality factor in the noncanonical contribution to the neutrino energy–momentum tensor (proportional to the metric tensor) approaches a constant as a(t) → ∞ and therefore the noncanonical contribution to the neutrino energy density dominates over the canonical one ~ m/a3 ~ a-3/2 at the late enough universe; hence the neutrino gas equation-of-state approaches w = -1, i.e. neutrinos in the CLEP regime behave as a sort of dark energy as a → ∞; the equation-of-state for the total (scalar field + neutrino) energy density and pressure also approaches w = -1 in the CLEP regime; besides the total energy density of such universe is less than it would be in the universe filled with the scalar field alone. An analytic solution is presented. A domain structure of the dark energy seems to be possible. We speculate that decays of the CLEP state neutrinos may be both an origin of cosmic rays and responsible for a late super-acceleration of the universe. In this sense the CLEP states exhibit simultaneously new physics at very low densities and for very high particle masses.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Antonio Capolupo ◽  
Gaetano Lambiase ◽  
Giuseppe Vitiello

The aim of this paper is to study thermal vacuum condensate for scalar and fermion fields. We analyze the thermal states at the temperature of the cosmic microwave background (CMB) and we show that the vacuum expectation value of the energy momentum tensor density of photon fields reproduces the energy density and pressure of the CMB. We perform the computations in the formal framework of the Thermo Field Dynamics. We also consider the case of neutrinos and thermal states at the temperature of the neutrino cosmic background. Consistency with the estimated lower bound of the sum of the active neutrino masses is verified. In the boson sector, nontrivial contribution to the energy of the universe is given by particles of masses of the order of 10−4 eV compatible with the ones of the axion-like particles. The fractal self-similar structure of the thermal radiation is also discussed and related to the coherent structure of the thermal vacuum.


Sign in / Sign up

Export Citation Format

Share Document