scholarly journals GENERALIZED GALILEI-INVARIANT CLASSICAL MECHANICS

2005 ◽  
Vol 20 (18) ◽  
pp. 4259-4289
Author(s):  
HARRY W. WOODCOCK ◽  
PETER HAVAS

To describe the "slow" motions of n interacting mass points, we give the most general four-dimensional (4D) noninstantaneous, nonparticle symmetric Galilei-invariant variational principle. It involves two-body invariants constructed from particle 4-positions and 4-velocities of the proper orthochronous inhomogeneous Galilei group. The resulting 4D equations of motion and multiple-time conserved quantities involve integrals over the worldlines of the other n-1 interacting particles. For a particular time-asymmetric retarded (advanced) interaction, we show the vanishing of all integrals over worldlines in the ten standard 4D multiple-time conserved quantities, thus yielding a Newtonian-like initial value problem. This interaction gives 3D noninstantaneous, nonparticle symmetric, coupled nonlinear second-order delay-differential equations of motion that involve only algebraic combinations of nonsimultaneous particle positions, velocities, and accelerations. The ten 3D noninstantaneous, nonparticle symmetric conserved quantities involve only algebraic combinations of nonsimultaneous particle positions and velocities. A two-body example with a generalized Newtonian gravity is provided. We suggest that this formalism might be useful as an alternative slow-motion mechanics for astrophysical applications.

1964 ◽  
Vol 17 (4) ◽  
pp. 431 ◽  
Author(s):  
LJ Tassie ◽  
HA Buchdahl

The invariance of a system under a given transformation of coordinates is usually taken to mean that its Lagrangian is invariant under that transformation. Consequently, whether or not the system is invariant will depend on the gauge used in describing the system. By defining invariance of a system to mean the invariance of its equations of motion, a gauge-independent theory of symmetry properties is obtained for classical mechanics in both the Lagrangian and Hamiltonian forms. The conserved quantities associated with continuous symmetry transformations are obtained. The system of a single particle moving in a given electromagnetic field is considered in detail for various symmetries of the electromagnetic field, and the appropriate conserved quantities are found.


1982 ◽  
Vol 26 (02) ◽  
pp. 97-105
Author(s):  
Michael S. Triantafyllou

The motion of a moored, or positioned, vessel under the influence of waves can be decomposed into a large-amplitude, slowly varying part and a small-amplitude, fast varying part. A consistent theory can be formulated, therefore, based on a multiple time scale expansion, together with an amplitude expansion of the general governing equations. The existing theory of ship motions remains unchanged within the present approach, while the equations of drift motion can be obtained separately from the fast dynamics, in a straightforward manner. It is shown that if the slow motion flow is modeled as inviscid and irrotational, its potential is of first order and satisfies linear boundary conditions. Also, the second-order force calculation is not influenced by the slow motions. The rolling motion of a moored vessel is studied as an example of the concepts introduced.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Soon Ho Kim ◽  
Jong Won Kim ◽  
Hyun Chae Chung ◽  
MooYoung Choi

AbstractThe principle of least effort has been widely used to explain phenomena related to human behavior ranging from topics in language to those in social systems. It has precedence in the principle of least action from the Lagrangian formulation of classical mechanics. In this study, we present a model for interceptive human walking based on the least action principle. Taking inspiration from Lagrangian mechanics, a Lagrangian is defined as effort minus security, with two different specific mathematical forms. The resulting Euler–Lagrange equations are then solved to obtain the equations of motion. The model is validated using experimental data from a virtual reality crossing simulation with human participants. We thus conclude that the least action principle provides a useful tool in the study of interceptive walking.


Author(s):  
M.A. Bubenchikov ◽  
◽  
A.M. Bubenchikov ◽  
D.V. Mamontov ◽  
◽  
...  

The aim of this work is to apply classical mechanics to a description of the dynamic state of C20@C80 diamond complex. Endohedral rotations of fullerenes are of great interest due to the ability of the materials created on the basis of onion complexes to accumulate energy at rotational degrees of freedom. For such systems, a concept of temperature is not specified. In this paper, a closed description of the rotation of large molecules arranged in diamond shells is obtained in the framework of the classical approach. This description is used for C20@C80 diamond complex. Two different problems of molecular dynamics, distinguished by a fixing method for an outer shell of the considered bimolecular complex, are solved. In all the cases, the fullerene rotation frequency is calculated. Since a class of possible motions for a single carbon body (molecule) consists of rotations and translational displacements, the paper presents the equations determining each of these groups of motions. Dynamic equations for rotational motions of molecules are obtained employing the moment of momentum theorem for relative motions of the system near the fullerenes’ centers of mass. These equations specify the operation of the complex as a molecular pendulum. The equations of motion of the fullerenes’ centers of mass determine vibrations in the system, i.e. the operation of the complex as a molecular oscillator.


1972 ◽  
Vol 94 (1) ◽  
pp. 1-7 ◽  
Author(s):  
O. B. Dale ◽  
R. Cohen

A method is presented for obtaining and optimizing the frequency response of one-dimensional damped linear continuous systems. The systems considered are assumed to contain unknown constant parameters in the boundary conditions and equations of motion which the designer can vary to obtain a minimum resonant response in some selected frequency interval. The unknown parameters need not be strictly dissipative nor unconstrained. No analytic solutions, either exact or approximate, are required for the system response and only initial value numerical integrations of the state and adjoint differential equations are required to obtain the optimal parameter set. The combinations of state variables comprising the response and the response locations are arbitrary.


1988 ◽  
Vol 110 (4) ◽  
pp. 382-388
Author(s):  
Liang-Wey Chang ◽  
James F. Hamilton

This paper presents a method for simulating systems with two inertially coupled motions, i.e., a slow motion and a fast motion. The equations of motion are separated into two sets of coupled nonlinear ordinary differential equations. For each time step, the two sets of equations are integrated sequentially rather than simultaneously. Explicit integration methods are used for integrating the slow motion since the stability of the integration is not a problem and the explicit methods are very convenient for nonlinear equations. For the fast motion, the equations are linear and the implicit integrations can be used with guaranteed stability. The size of time step only needs to be chosen to provide accuracy of the solution for the modes that are excited. The interaction between the two types of motion must be treated such that secular terms do not appear due to the sequential integration method. A lumped model of a flexible pendulum will be presented in this paper to illustrate the application of the method. Numerical results for both simultaneous and sequential integration are presented for comparison.


2013 ◽  
Vol 20 (6) ◽  
pp. 1033-1047 ◽  
Author(s):  
J. Warminski ◽  
M. P. Cartmell ◽  
A. Mitura ◽  
M. Bochenski

An application of the nonlinear saturation control (NSC) algorithm for a self-excited strongly nonlinear beam structure driven by an external force is presented in the paper. The mathematical model accounts for an Euler-Bernoulli beam with nonlinear curvature, reduced to first mode oscillations. It is assumed that the beam vibrates in the presence of a harmonic excitation close to the first natural frequency of the beam, and additionally the beam is self-excited by fluid flow, which is modelled by a nonlinear Rayleigh term for self-excitation. The self- and externally excited vibrations have been reduced by the application of an active, saturation-based controller. The approximate analytical solutions for a full structure have been found by the multiple time scales method, up to the first-order approximation. The analytical solutions have been compared with numerical results obtained from direct integration of the ordinary differential equations of motion. Finally, the influence of a negative damping term and the controller's parameters for effective vibrations suppression are presented.


Sign in / Sign up

Export Citation Format

Share Document