The interaction between dark energy and dark matter and its connection to the modified gravity

2015 ◽  
Vol 30 (28n29) ◽  
pp. 1545012
Author(s):  
Jian-Hua He ◽  
Bin Wang

We review the conformal equivalence in describing the background expansion of the universe by [Formula: see text] gravity both in the Jordan frame and the Einstein frame. In the Jordan frame, we present the general analytic expression for [Formula: see text] models that have the same expansion history as the [Formula: see text]CDM model. This analytic form can provide further insights on how cosmology can be used to test the [Formula: see text] gravity at the largest scales. Moreover we present a systematic and self-consistent way to construct the viable [Formula: see text] model in Jordan frame using the mass dilation rate function from the Einstein frame through the conformal transformation. In addition, we extend our study to the linear perturbation theories and we further exhibit the equivalence of the [Formula: see text] gravity presented in the Jordan frame and Einstein frame in the perturbed space–time. We argue that this equivalence has solid physics root.

2021 ◽  
Vol 2021 (12) ◽  
pp. 016
Author(s):  
Dipayan Mukherjee ◽  
H.K. Jassal ◽  
Kinjalk Lochan

Abstract The accelerated expansion of the universe demands presence of an exotic matter, namely the dark energy. Though the cosmological constant fits this role very well, a scalar field minimally coupled to gravity, or quintessence, can also be considered as a viable alternative for the cosmological constant. We study f(R) gravity models which can lead to an effective description of dark energy implemented by quintessence fields in Einstein gravity, using the Einstein frame-Jordan frame duality. For a family of viable quintessence models, the reconstruction of the f(R) function in the Jordan frame consists of two parts. We first obtain a perturbative solution of f(R) in the Jordan frame, applicable near the present epoch. Second, we obtain an asymptotic solution for f(R), consistent with the late time limit of the Einstein frame if the quintessence field drives the universe. We show that for certain class of viable quintessence models, the Jordan frame universe grows to a maximum finite size, after which it begins to collapse back. Thus, there is a possibility that in the late time limit where the Einstein frame universe continues to expand, the Jordan frame universe collapses. The condition for this expansion-collapse duality is then generalized to time varying equations of state models, taking into account the presence of non-relativistic matter or any other component in the Einstein frame universe. This mapping between an expanding geometry and a collapsing geometry at the field equation level may have interesting potential implications on the growth of perturbations therein at late times.


2013 ◽  
Vol 22 (14) ◽  
pp. 1350083 ◽  
Author(s):  
UMANANDA DEV GOSWAMI ◽  
KABITA DEKA

f(R) gravity models belong to an important class of modified gravity models where the late time cosmic accelerated expansion is considered as a manifestation of the large scale modification of the force of gravity. f(R) gravity models can be expressed in terms of a scalar degree of freedom by redefinition of model's variable. The conformal transformation of the action from Jordan frame to Einstein frame makes the scalar degree of freedom more explicit and can be studied conveniently. We have investigated the features of the scalar degree of freedoms and the consequent cosmological implications of the power-law (ξRn) and the Starobinsky (disappearing cosmological constant) f(R) gravity models numerically in the Einstein frame. Both the models show interesting behavior of their scalar degree of freedom and could produce the accelerated expansion of the universe in the Einstein frame with the negative equation of state of the scalar field. However, the scalar field potential for the power-law model is the well-behaved function of the field, whereas the potential becomes flat for higher value of field in the case of the Starobinsky model. Moreover, the equation of state of the scalar field for the power-law model is always negative and less than -1/3, which corresponds to the behavior of the dark energy, that produces the accelerated expansion of the universe. This is not always the case for the Starobinsky model. At late times, the Starobinsky model behaves as cosmological constant Λ as behaves by power-law model for the values of n → 2 at all times.


2018 ◽  
Vol 15 (02) ◽  
pp. 1850025 ◽  
Author(s):  
Surajit Chattopadhyay

The present study reports a reconstruction scheme for [Formula: see text] gravity considering the scale factor in the power law form. The equation of state parameter has been studied for this reconstructed model along with the deceleration parameter and the statefinder pair [Formula: see text]. The statefinder trajectory has been found to interpolate between dust and [Formula: see text]CDM phase of the universe. Cosmological evolution of primordial perturbations has been studied through scalar metric fluctuations and finally the reconstructed [Formula: see text] model has been tested for its consistency with the generic expansion of the universe.


2021 ◽  
Vol 36 (37) ◽  
Author(s):  
Nashiba Parbin ◽  
Umananda Dev Goswami

In this paper, we conduct a study on the scalar field obtained from [Formula: see text] gravity via Weyl transformation of the spacetime metric [Formula: see text] from the Jordan frame to the Einstein frame. The scalar field is obtained as a result of the modification in the geometrical part of Einstein’s field equation of General Relativity. For the Hu–Sawicki model of [Formula: see text] gravity, we find the effective potential of the scalar field and calculate its mass. Our study shows that the scalar field (also named as scalaron) obtained from this model has the chameleonic property, i.e. the scalaron becomes light in the low-density region, while it becomes heavy in the high-density region of matter. Then it is found that the scalaron can be regarded as a dark matter (DM) candidate since the scalaron mass is found to be quite close to the mass of ultralight axions, a prime DM candidate. Thus, the scalaron in the Hu–Sawicki model of [Formula: see text] gravity behaves as DM. Further, a study on the evolution of the scalaron mass with the redshift is also carried out, which depicts that scalaron becomes light with expansion of the Universe and with different rates at different stages of the Universe.


2019 ◽  
Author(s):  
Matheus Pereira Lobo

We propose the discussion of a highly speculative idea for the scenario where black hole collisions and their subsequent increase in sizes exceed the expansion of the universe.


Author(s):  
Michael Kachelriess

The contribution of vacuum fluctuations to the cosmological constant is reconsidered studying the dependence on the used regularisation scheme. Then alternative explanations for the observed accelerated expansion of the universe in the present epoch are introduced which either modify gravity or add a new component of matter, dubbed dark energy. The chapter closes with some comments on attempts to quantise gravity.


2020 ◽  
Vol 98 (11) ◽  
pp. 1015-1022 ◽  
Author(s):  
Parbati Sahoo ◽  
Barkha Taori ◽  
K.L. Mahanta

We construct a locally rotationally symmetric (LRS) Bianchi type-I cosmological model in f(R, T) theory of gravity when the source of gravitation is a mixture of barotropic fluid and dark energy (DE) by employing a time-varying deceleration parameter. We observe through the behavior of the state finder parameters (r, s) that our model begins from the Einstein static era and goes to ΛCDM era. The equation of state (EOS) parameter (ωd) for DE varies from the phantom (ω < –1) phase to quintessence (ω > –1) phase, which is consistent with observational results. It is found that the discussed model can reproduce the current accelerating phase of the expansion of the universe.


Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 163
Author(s):  
Verónica Motta ◽  
Miguel A. García-Aspeitia ◽  
Alberto Hernández-Almada ◽  
Juan Magaña ◽  
Tomás Verdugo

The accelerated expansion of the Universe is one of the main discoveries of the past decades, indicating the presence of an unknown component: the dark energy. Evidence of its presence is being gathered by a succession of observational experiments with increasing precision in its measurements. However, the most accepted model for explaining the dynamic of our Universe, the so-called Lambda cold dark matter, faces several problems related to the nature of such energy component. This has led to a growing exploration of alternative models attempting to solve those drawbacks. In this review, we briefly summarize the characteristics of a (non-exhaustive) list of dark energy models as well as some of the most used cosmological samples. Next, we discuss how to constrain each model’s parameters using observational data. Finally, we summarize the status of dark energy modeling.


Sign in / Sign up

Export Citation Format

Share Document