scholarly journals Early formed astrophysical objects and cosmological antimatter

2016 ◽  
Vol 31 (28n29) ◽  
pp. 1645029 ◽  
Author(s):  
Alexander D. Dolgov

Astronomical observations of recent years show that the universe at high redshifts (about ten) is densely populated by early formed objects: bright galaxies, quasars, gamma-bursters, and it contains a lot of metals and dust. Such a rich variety of early formed objects have not been expected in the standard model of formation of astrophysical objects. There is serious tension between the standard theory and the observations. We describe the model which relaxes this tension and nicely fits the data. The model naturally leads to the creation of cosmologically significant antimatter which may be abundant even in the Galaxy. Phenomenological consequences of our scenario and the possibility of distant registration of antimatter are discussed.

Author(s):  
Shivan Jumaa

In this study, we discuss the properties of absolute void space or the universe at zero seconds, and how these properties play a vital role in creating a mechanism in which the very first particle gets created and we find the limit in which when the absolute void volume reaches will lead to the collapse that leads to the creation of the first particle. Later we discuss the standard model explanation through the elementary dimensions theory, as according to the elementary dimensions theory study that was peer-reviewed at the end of 2020, everything in the universe is made from four elementary dimensions, these dimensions are the three spatial dimensions (X, Y, and Z) and the force equivalent.


2007 ◽  
Vol 04 (01) ◽  
pp. 171-181 ◽  
Author(s):  
B. M. BARBASHOV ◽  
V. N. PERVUSHIN ◽  
A. F. ZAKHAROV ◽  
V. A. ZINCHUK

Approaches to solutions of problems of the energy, time, Hamiltonian operator quantization of the General Relativity, the creation of the Universe from vacuum are considered in the frame of reference associated with the CMB radiation in order to describe parameters of this radiation in terms of the parameters of the Standard Model of elementary particles.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Paul Frederik Depta ◽  
Andreas Halsch ◽  
Janine Hütig ◽  
Sebastian Mendizabal ◽  
Owe Philipsen

Abstract Thermal leptogenesis, in the framework of the standard model with three additional heavy Majorana neutrinos, provides an attractive scenario to explain the observed baryon asymmetry in the universe. It is based on the out-of-equilibrium decay of Majorana neutrinos in a thermal bath of standard model particles, which in a fully quantum field theoretical formalism is obtained by solving Kadanoff-Baym equations. So far, the leading two-loop contributions from leptons and Higgs particles are included, but not yet gauge corrections. These enter at three-loop level but, in certain kinematical regimes, require a resummation to infinite loop order for a result to leading order in the gauge coupling. In this work, we apply such a resummation to the calculation of the lepton number density. The full result for the simplest “vanilla leptogenesis” scenario is by $$ \mathcal{O} $$ O (1) increased compared to that of quantum Boltzmann equations, and for the first time permits an estimate of all theoretical uncertainties. This step completes the quantum theory of leptogenesis and forms the basis for quantitative evaluations, as well as extensions to other scenarios.


Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 276
Author(s):  
Muhammad Zahid Mughal ◽  
Iftikhar Ahmad ◽  
Juan Luis García Guirao

In this review article, the study of the development of relativistic cosmology and the introduction of inflation in it as an exponentially expanding early phase of the universe is carried out. We study the properties of the standard cosmological model developed in the framework of relativistic cosmology and the geometric structure of spacetime connected coherently with it. The geometric properties of space and spacetime ingrained into the standard model of cosmology are investigated in addition. The big bang model of the beginning of the universe is based on the standard model which succumbed to failure in explaining the flatness and the large-scale homogeneity of the universe as demonstrated by observational evidence. These cosmological problems were resolved by introducing a brief acceleratedly expanding phase in the very early universe known as inflation. The cosmic inflation by setting the initial conditions of the standard big bang model resolves these problems of the theory. We discuss how the inflationary paradigm solves these problems by proposing the fast expansion period in the early universe. Further inflation and dark energy in fR modified gravity are also reviewed.


1994 ◽  
Vol 161 ◽  
pp. 423-424
Author(s):  
I.N. Reid ◽  
S.R. Majewski

Starcounts remain one of the most effective methods of probing the structure of the Galactic stellar populations. However, studies of the distribution at large distances above the Plane demand accurate photometry extending to faint magnitudes (V > 20), and such datasets are still rare. We (Reid & Majewski 1993) have analyzed data from one field — Majewski's (1992) UJF observations of SA57, the North Galactic Pole field. Our results revealed significant discrepancies with the standard model of the Galaxy (see refs. in Reid & Majewski), notably a paucity in the number of halo stars by a factor of two and the presence of a factor of two more disk stars than predicted — sufficient stars that the disk is the majority stellar population, outnumbering halo stars 2:1 even at V = 21. Majewski et al. (1993) has obtained UJFN photographic data for several other fields, and Fig. 1 shows a preliminary comparison of these observations with the predictions of the best-fitting SA57 model. Given that none of the parameters have been modified, the agreement is surprisingly good.


2012 ◽  
Vol 27 (21) ◽  
pp. 1250117 ◽  
Author(s):  
FAYYAZUDDIN

A model for electroweak unification of quarks and leptons, in a gauge group SUC(3) × SU(4) × UX(1) is constructed. The model requires, three generations of quarks and leptons which are replicas (mirror) of the standard quarks and leptons. The gauge group SU(4) × UX(1) is broken in such a way so as to reproduce standard model and to generate heavy masses for the vector bosons [Formula: see text], the leptoquarks and mirror fermions. It is shown lower limit on mass scale of mirror fermions is [Formula: see text], E- being the lightest mirror fermion coupled to Z boson. As the universe expands, the heavy matter is decoupled at an early stage of expansion and may be a source of dark matter. Leptoquarks in the model connect the standard model and mirror fermions. Baryon genesis in our universe implies antibaryon genesis in mirror universe.


Author(s):  
Helge Kragh

Since about 1970 the broadly accepted theory of the universe has been the standard hot big-bang model. However, there is and has always been alternative theories which challenge one or more features of the standard model or, more radically, question the scientific nature of cosmology. Is the universe governed by Einstein’s field equations? Is it really in a state of expansion? Did it begin with a big bang? The chapter discusses various alternative or heterodox theories in the period from about 1930 to 1980, among them the idea of a static universe and the conception that our universe evolves cyclically in infinite cosmic time. While some of these theories have been abandoned long ago, others still live on and are cultivated by a minority of cosmologists and other scientists.


2017 ◽  
Vol 32 (15) ◽  
pp. 1740005 ◽  
Author(s):  
Wan-Zhe Feng ◽  
Pran Nath

A brief review is given of some recent works where baryogenesis and dark matter have a common origin within the U(1) extensions of the Standard Model (SM) and of the minimal supersymmetric Standard Model (MSSM). The models considered generate the desired baryon asymmetry and the dark matter to baryon ratio. In one model, all of the fundamental interactions do not violate lepton number, and the total [Formula: see text] in the Universe vanishes. In addition, one may also generate a normal hierarchy of neutrino masses and mixings in conformity with the current data. Specifically, one can accommodate [Formula: see text] consistent with the data from Daya Bay reactor neutrino experiment.


Sign in / Sign up

Export Citation Format

Share Document