Color-flavor locked compact stars: An exact solution approach

Author(s):  
Ksh. Newton Singh ◽  
Shyam Das ◽  
Piyali Bhar ◽  
Monsur Rahaman ◽  
Farook Rahaman

We present an exact solution that could describe compact star composed of color-flavor locked (CFL) phase. Einstein’s field equations were solved through CFL equation of state (EoS) along with a specific form of [Formula: see text] metric potential. Further, to explore a generalized solution we have also included pressure anisotropy. The solution is then analyzed by varying the color superconducting gap [Formula: see text] and its effects on the physical parameters. The stability of the solution through various criteria is also analyzed. To show the physical validity of the obtained solution we have generated the [Formula: see text] curve and fitted three well-known compact stars. This work shows that the anisotropy of the pressure at the interior increases with the color superconducting gap leading to decrease in adiabatic index closer to the critical limit. Further, the fluctuating range of mass due to the density perturbation is larger for lower color superconducting gap leading to more stable configuration.

2017 ◽  
Vol 26 (09) ◽  
pp. 1750090 ◽  
Author(s):  
Piyali Bhar ◽  
Ksh. Newton Singh ◽  
Tuhina Manna

In the present paper, we have constructed a new relativistic anisotropic compact star model having a spherically symmetric metric of embedding class one. Here we have assumed an arbitrary form of metric function [Formula: see text] and solved the Einstein’s relativistic field equations with the help of Karmarkar condition for an anisotropic matter distribution. The physical properties of our model such as pressure, density, mass function, surface red-shift, gravitational redshift are investigated and the stability of the stellar configuration is discussed in details. Our model is free from central singularities and satisfies all energy conditions. The model we present here satisfy the static stability criterion, i.e. [Formula: see text] for [Formula: see text][Formula: see text]g/cm3(stable region) and for [Formula: see text][Formula: see text]g/cm3, the region is unstable i.e. [Formula: see text].


2018 ◽  
Vol 27 (08) ◽  
pp. 1850082 ◽  
Author(s):  
M. Farasat Shamir ◽  
Saeeda Zia

Current study highlights the physical characteristics of charged anisotropic compact stars by exploring some exact solutions of modified field equations in [Formula: see text] gravity. A comprehensive analysis is performed from the obtained solutions regarding stability, energy conditions, regularity, sound velocity and compactness. These solutions can be referred to model the compact celestial entities. In particular, a compact star named, [Formula: see text] has been modeled which indicates that current solution fits and is in conformity to the observational data as well. A useful and interesting fact from this model arises that relative difference between two forces of anisotropic pressure and electromagnetic force may occur inside the aforementioned compact star. This is another mechanism which is essential for stability of the compact object and prevent stellar object to annihilate.


Author(s):  
Jay Solanki

In this paper, model of gravitational collapse of anisotropic compact stars in a new theory of [Formula: see text] gravity has been developed. The author considers the modified gravity model of [Formula: see text] to investigate a physically acceptable model of gravitational collapse of anisotropic compact stars. First, the author presents a brief review of the development of field equations of gravitational collapse in [Formula: see text] gravity for a particular interior metric for compact stars. Then analytical solutions for various physical quantities of collapsing anisotropic compact stars in [Formula: see text] gravity have been developed. By analyzing plots of various physical parameters and conditions, it is shown that the model is physically acceptable for describing the gravitational collapse of anisotropic compact stars in [Formula: see text] gravity.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
S. A. Mardan ◽  
I. Noureen ◽  
A. Khalid

AbstractThis manuscript is related to the construction of relativistic core-envelope model for spherically symmetric charged anisotropic compact objects. The polytropic equation of state is considered for core, while it is linear in the case of envelope. We present that core, envelope and the Reissner Nordstr$$\ddot{o}$$ o ¨ m exterior regions of stars match smoothly. It has been verified that all physical parameters are well behaved in the core and envelope region for the compact stars SAX J1808.4-3658 and 4U1608-52. Various physical parameters inside star are discussed herein, non-singularity and continuity at the junction has been catered as well. Impact of charged compact object together with core-envelope model on the mass, radius and compactification factor is described by graphical representation in both core and envelop regions. The stability of the model is worked out with the help of Tolman–Oppenheimer–Volkoff equations and radial sound speed.


2020 ◽  
Vol 17 (09) ◽  
pp. 2050140
Author(s):  
M. Farasat Shamir ◽  
I. Fayyaz

In this paper, we have presented the Einstein–Maxwell equations which are described by the spherically symmetric spacetime in the presence of charge by exploiting the Tolman–Kuchowicz spacetime. The corresponding field equations are constructed and the form of charge distribution is chosen to be [Formula: see text], where [Formula: see text] is a constant quantity. We also find the values of unknown constants from junction conditions and discuss the behavior of effective energy density, effective radial and tangential pressure and anisotropic factor with two viable [Formula: see text] models. We examine the physical stability of charged stellar structure through energy conditions, causality and stability condition. We use modified form of TOV equation for anisotropic charged fluid sphere to analyze the equilibrium condition. In this work, we model the compact star candidate SAXJ 1808.4 – 3658 and study the compactness level and anisotropic behavior corresponding to the variation of physical parameters which are involved in [Formula: see text] models. Further, we evaluate some important properties such as mass-radius ratio compactness factor and surface redshift. It is depicted from this study that the obtained solutions provide strong evidences for more realistic and viable stellar model.


1995 ◽  
Vol 48 (4) ◽  
pp. 635 ◽  
Author(s):  
LK Patel ◽  
NP Mehta

In this paper the field equations of general relativity are solved to obtain an exact solution for a static anisotropic fluid sphere. The solution is free from singularity and satisfies the necessary physical requirements. The physical 3-space of the solution is pseudo-spheroidal. The solution is matched at the boundary with the Schwarzschild exterior solution. Numerical estimates of various physical parameters are briefly discussed.


2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Piyali Bhar ◽  
Pramit Rej ◽  
P. Mafa Takisa ◽  
M. Zubair

AbstractIn this present work, we have obtained a singularity-free spherically symmetric stellar model with anisotropic pressure in the background of Einstein’s general theory of relativity. The Einstein’s field equations have been solved by exploiting Tolman ansatz [Richard C Tolman, Phys. Rev. 55:364, 1939] in $$(3+1)$$ ( 3 + 1 ) -dimensional space-time. Using observed values of mass and radius of the compact star PSR J1903+327, we have calculated the numerical values of all the constants from the boundary conditions. All the physical characteristics of the proposed model have been discussed both analytically and graphically. The new exact solution satisfies all the physical criteria for a realistic compact star. The matter variables are regular and well behaved throughout the stellar structure. Constraints on model parameters have been obtained. All the energy conditions are verified with the help of graphical representation. The stability condition of the present model has been described through different testings.


2018 ◽  
Vol 27 (08) ◽  
pp. 1850089 ◽  
Author(s):  
Dibyendu Shee ◽  
Debabrata Deb ◽  
Shounak Ghosh ◽  
Saibal Ray ◽  
B. K. Guha

In this paper, we present a strange stellar model using Tolman [Formula: see text]-type metric potential employing simplest form of the MIT bag equation of state (EOS) for the quark matter. We consider that the stellar system is spherically symmetric, compact and made of an anisotropic fluid. Choosing different values of [Formula: see text] we obtain exact solutions of the Einstein field equations and finally conclude that for a specific value of the parameter [Formula: see text], we find physically acceptable features of the stellar object. Further, we conduct different physical tests, viz., the energy condition, generalized Tolman–Oppeheimer–Volkoff (TOV) equation, Herrera’s cracking concept, etc., to confirm the physical validity of the presented model. Matching conditions provide expressions for different constants whereas maximization of the anisotropy parameter provides bag constant. By using the observed data of several compact stars, we derive exact values of some of the physical parameters and exhibit their features in tabular form. It is to note that our predicted value of the bag constant satisfies the report of CERN-SPS and RHIC.


2019 ◽  
Vol 28 (13) ◽  
pp. 1941006 ◽  
Author(s):  
Abdul Aziz ◽  
Saibal Ray ◽  
Farook Rahaman ◽  
M. Khlopov ◽  
B. K. Guha

We provide a strange star model under the framework of general relativity by using a general linear equation of state (EOS). The solution set thus obtained is employed on altogether 20 compact star candidates to constraint values of MIT bag model. No specific value of the bag constant ([Formula: see text]) a priori is assumed, rather possible range of values for bag constant is determined from observational data of the said set of compact stars. To do so, the Tolman–Oppenheimer–Volkoff (TOV) equation is solved by homotopy perturbation method (HPM) and hence we get a mass function for the stellar system. The solution to the Einstein field equations represents a nonsingular, causal and stable stellar structure which can be related to strange stars. Eventually, we get an interesting result on the range of the bag constant as [Formula: see text]. We have found the maximum surface redshift [Formula: see text] and shown that the central redshift ([Formula: see text]) cannot have value larger than [Formula: see text], where [Formula: see text]. Also, we provide a possible value of bag constant for neutron star with quark core using hadronic as well as quark EOS.


2021 ◽  
Vol 36 (32) ◽  
Author(s):  
S. K. Maurya ◽  
Anirudh Pradhan ◽  
Ayan Banerjee ◽  
Francisco Tello-Ortiz ◽  
M. K. Jasim

In astronomy, the study of compact stellar remnants — white dwarfs, neutron stars, black holes — has attracted much attention for addressing fundamental principles of physics under extreme conditions in the core of compact objects. In a recent argument, Maurya et al. [Eur. Phys. J. C 77, 45 (2017)] have proposed an exact solution depending on a specific spacetime geometry. Here, we construct equilibrium configurations of compact stars for the same spacetime that make it interesting for modeling high density physical astronomical objects. All calculations are carried out within the framework of the five-dimensional Einstein–Gauss–Bonnet gravity. Our main interest is to explore the dependence of the physical properties of these compact stars depending on the Gauss–Bonnet coupling constant. The interior solutions have been matched to an exterior Boulware–Deser solution for [Formula: see text] spacetime. Our finding ensures that all energy conditions hold, and the speed of sound remains causal, everywhere inside the star. Moreover, we study the dynamical stability of stellar structure by taking into account the modified field equations using the theory of adiabatic radial oscillations developed by Chandrasekhar. Based on the observational data for radii and masses coming from different astronomical sources, we show that our model is compatible and physically relevant.


Sign in / Sign up

Export Citation Format

Share Document