CHARACTERIZATION OF CUBIC BORON NITRIDE THIN FILMS DEPOSITED BY RF SPUTTER

2002 ◽  
Vol 16 (28n29) ◽  
pp. 4339-4342 ◽  
Author(s):  
JINXIANG DENG ◽  
GUANGHUA CHEN ◽  
XUEMEI SONG

Cubic boron nitride (c-BN) thin films have been deposited on Si substrates by radio frequency sputter. Sputtering target was hot pressed hexagonal boron nitride of 4N purity. Sputtering gas was the mixture of nitrogen and argon. During depositing c-BN thin films, substrates were biased by dc voltage negatively with respect to ground. By optimizing the deposition conditions, the boron nitride (BN) films containing a large amount of cubic phase were obtained. The samples were characterized with Fourier transformation infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). According to FTIR, the cubic phase content of c-BN thin films was evaluated to be 92. The B/N ratio was estimated to be approximately 1 from XPS. The AFM shows that the c-BN thin films delaminated from Si substrates obviously.

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Yong-Jin Cho ◽  
Alex Summerfield ◽  
Andrew Davies ◽  
Tin S. Cheng ◽  
Emily F. Smith ◽  
...  

Abstract We demonstrate direct epitaxial growth of high-quality hexagonal boron nitride (hBN) layers on graphite using high-temperature plasma-assisted molecular beam epitaxy. Atomic force microscopy reveals mono- and few-layer island growth, while conducting atomic force microscopy shows that the grown hBN has a resistance which increases exponentially with the number of layers, and has electrical properties comparable to exfoliated hBN. X-ray photoelectron spectroscopy, Raman microscopy and spectroscopic ellipsometry measurements on hBN confirm the formation of sp2-bonded hBN and a band gap of 5.9 ± 0.1 eV with no chemical intermixing with graphite. We also observe hexagonal moiré patterns with a period of 15 nm, consistent with the alignment of the hBN lattice and the graphite substrate.


2018 ◽  
Vol 54 (85) ◽  
pp. 12021-12024 ◽  
Author(s):  
Manal Alkhamisi ◽  
Vladimir V. Korolkov ◽  
Anton S. Nizovtsev ◽  
James Kerfoot ◽  
Takashi Taniguchi ◽  
...  

Free-base phthalocyanine forms distinct interfacial phases and thin films on hexagonal boron nitride including a monolayer arrangement as determined using high resolution atomic force microscopy.


2003 ◽  
Vol 780 ◽  
Author(s):  
C. Essary ◽  
V. Craciun ◽  
J. M. Howard ◽  
R. K. Singh

AbstractHf metal thin films were deposited on Si substrates using a pulsed laser deposition technique in vacuum and in ammonia ambients. The films were then oxidized at 400 °C in 300 Torr of O2. Half the samples were oxidized in the presence of ultraviolet (UV) radiation from a Hg lamp array. X-ray photoelectron spectroscopy, atomic force microscopy, and grazing angle X-ray diffraction were used to compare the crystallinity, roughness, and composition of the films. It has been found that UV radiation causes roughening of the films and also promotes crystallization at lower temperatures.Furthermore, increased silicon oxidation at the interface was noted with the UVirradiated samples and was shown to be in the form of a mixed layer using angle-resolved X-ray photoelectron spectroscopy. Incorporation of nitrogen into the film reduces the oxidation of the silicon interface.


2005 ◽  
Vol 202 (1) ◽  
pp. 3-3 ◽  
Author(s):  
Wei Chen ◽  
Kian Ping Loh ◽  
Ming Lin ◽  
Rong Liu ◽  
Andrew T. S. Wee

Author(s):  
Mukhtiar Singh ◽  
Hitesh Vasudev ◽  
Ravinder Kumar

Boron nitride coatings were synthesised on 316L stainless steel substrates through the radio frequency magnetron sputtering from a target made of hexagonal boron nitride. The process of deposition was conducted in three separate N2 and Ar system mixing regimes. Scanning electron microscopy (SEM) and x-ray diffraction (XRD) techniques investigated the microstructure morphology and composition of the BN films at varying ratio of N2 and Ar plasma. This research aimed to examine the effects of changing the N2 gas ratio on the structure and structural morphology of c-BN coatings. Using QAr / QN2-5/1 ratios, an increased consistency of the microstructure and further c-BN step formation suggest a fundamental technique for producing superior quality cubic boron nitride films. The electrochemical corrosion test and mechanical analysis was performed to study corrosion and tribological behaviour of the BN coating, and the results showed more improvement in corrosion and tribilogical behaviour in case of BN2 regime. The BN2 regime showed a maximum corrosion resistance of around 1.114 mpy (miles per year). The young's modulus of 346Gpa in magnitude in case of BN2 thin film was found to be higher as compared to base material and other two thin films.


2015 ◽  
Vol 1117 ◽  
pp. 139-142 ◽  
Author(s):  
Marius Dobromir ◽  
Radu Paul Apetrei ◽  
A.V. Rogachev ◽  
Dmitry L. Kovalenko ◽  
Dumitru Luca

Amorphous Nb-doped TiO2 thin films were deposited on (100) Si and glass substrates at room temperature by RF magnetron sputtering and a mosaic-type Nb2O5-TiO2 sputtering target. To adjust the amount of the niobium dopant in the film samples, appropriate numbers of Nb2O5 pellets were placed on the circular area of the magnetron target with intensive sputtering. By adjusting the discharge conditions and the number of niobium oxide pellets, films with dopant content varying between 0 and 16.2 at.% were prepared, as demonstrated by X-ray photoelectron spectroscopy data. The X-ray diffraction patterns of the as-deposited samples showed the lack of crystalline ordering in the samples. Surfaces roughness and energy band gap values increase with dopant concentration, as showed by atomic force microscopy and UV-Vis spectroscopy measurements.


2012 ◽  
Vol 545 ◽  
pp. 290-293
Author(s):  
Maryam Amirhoseiny ◽  
Hassan Zainuriah ◽  
Ng Shashiong ◽  
Mohd Anas Ahmad

We have studied the effects of deposition conditions on the crystal structure of InN films deposited on Si substrate. InN thin films have been deposited on Si(100) substrates by reactive radio frequency (RF) magnetron sputtering method with pure In target at room temperature. The nitrogen gas pressure, applied RF power and the distance between target and substrate were 2×10-2 Torr, 60 W and 8 cm, respectively. The effects of the Ar–N2 sputtering gas mixture on the structural properties of the films were investigated by using scanning electron microscope, energy-dispersive X-ray spectroscopy, atomic force microscopy and X-ray diffraction techniques.


2013 ◽  
Vol 446-447 ◽  
pp. 306-311 ◽  
Author(s):  
Sudhanshu Dwivedi ◽  
Somnath Biswas

Mixed phase TiO2 thin films of rutile and anatase type crystal orientations were deposited on Si substrates by pulsed laser deposition (PLD) technique. When annealed at 800°C at 1 mbar oxygen pressure for 3 h, the deposited films transform into a single phase of rutile type. Structural and morphological studies of the as-deposited and annealed films were performed with X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), Raman spectroscopy, and atomic force microscopy (AFM). Photoluminescence (PL) spectroscopy was used for optical characterization of the annealed thin films.


Author(s):  
Anil G. Khairnar ◽  
Vilas S. Patil ◽  
K.S. Agrawal ◽  
Prerna A. Pandit ◽  
Rahul S. Salunke ◽  
...  

The study of ZrO2 thin films on SiC group IV compound semiconductor has been studied as a high mobility substrates. The ZrO2 thin films were deposited using the Plasma Enhanced Atomic Layer Deposition System. The thickness of the thin films were measured using ellipsometer and found to be 5.47 nm. The deposited ZrO2 thin films were post deposited annealed in rapid thermal annealing chamber at temperature of 400oC. The atomic force microscopy and x-ray photoelectron spectroscopy has been carried out to study the surface topography and roughness and chemical composition of thin film respectively. DOI: 10.21883/FTP.2017.01.8125


MRS Advances ◽  
2019 ◽  
Vol 4 (10) ◽  
pp. 601-608
Author(s):  
N. Khan ◽  
E. Nour ◽  
J. Mondoux ◽  
S. Liu ◽  
J.H. Edgar ◽  
...  

ABSTRACTHexagonal boron nitride (hBN), a two dimensional (2D) material, has emerged as an important substrate and dielectric for electronic, optoelectronic, and photonic devices based on graphene and other atomically thin two dimensional materials. Here we report on the initial oxidation of (0001) hBN single crystals in ambient air as functions of temperature and time, as determined by atomic force microscopy (AFM) and scanning electron microscope with energy dispersive X-ray spectroscopy (SEM/EDS). For oxidation times of 20 minutes, the first evidence of oxidation appears at 900°C, with the formation of shallow, hexagonal-, and irregular-shaped pits that are less than 100 nm across and several nanometer deep. Oxidation at 1100°C for 20 minutes produced 1.0-2.0-micron size pits with flat and pointed bottoms that were approximately hexagonal-shaped, but with rough and irregular edges, and multiple interior steps. Oxidation was not uniform on the surface of hBN, but starts where dislocations in the crystal intersected the surfaces. Pit depth increased linearly with temperature and oxidation times. In addition to the surface pits, small particles formed on the surface. Elemental analysis of the thermally oxidized hBN crystals by SEM/EDS revealed the major elements of these particles were boron and oxygen.


Sign in / Sign up

Export Citation Format

Share Document