Monitoring of Failure Mechanisms in Fiber Reinforced Composites During Cryogenic Cooling by Acoustic Emission

2003 ◽  
Vol 17 (08n09) ◽  
pp. 1763-1769 ◽  
Author(s):  
Nak Sam Choi ◽  
Sung Choong Woo ◽  
Tae Won Kim ◽  
Kyong Y. Rhee

Microfractures in composite laminates during cryogenic cooling were monitored employing thermo-acoustic emission(AE). During the initial stage of cryogenic cooling, very strong AE signals with low and high frequency bands were dominantly detected showing a development of large cracks accompanying fiber breakages. After that, weak emissions with low frequency bands became prevalent indicating the propagation of microfractures in the matrix and/or fiber-matrix interface. It was concluded that the breakage of bridged-fibers hindering the macroscopic cracking in the initial stage might be the representative cryogenic damage of composite laminates.

Author(s):  
Zhongzheng Zhang ◽  
Hua Liang ◽  
Cheng Ye ◽  
Wensheng Cai ◽  
Jun Jiang ◽  
...  

In order to study acoustic emission (AE) signals waveform characteristics of pitting corrosion on 304 stainless steel under higher temperature than lower one, Pitting corrosion process on 304 stainless steel in 6% ferric chloride solution at 70°C was monitored by AE technology. Wavelet transform and mode acoustic emission technology were combined to deal with recorded AE signals, and micromorphologic observation was performed for further verification. The results showed that signal waveform was mainly composed of low-frequency (<100KHz) flexural wave with larger amplitude & energy and high-frequency (>100KHz) expansion wave with lesser amplitude & energy. The research results have some certain significance for AE monitoring of pitting corrosion on 304 stainless steel.


2011 ◽  
Vol 480-481 ◽  
pp. 421-426
Author(s):  
Chao Lu ◽  
Peng Ding ◽  
Zheng Hua Chen

In this paper, we use acoustic emission (AE) system to collect the AE signals and analyze the damage evolution during the monotonic compression test. Based on the experimental correlation diagram of the load and characters of the acoustic emission, the reference load of failure was found. The experimental results also revealed the characters of the source of the acoustic emission signals after the wavelet packet decomposition and frequency spectrum analysis. The frequency range of the matrix cracking is on the range of 125~187.5 kHz, while the frequency range of layer debonding is wide, it is not just on the low-frequency range but on the high-frequency range. The frequency of fiber breakage is on the high frequency range, nearly on the range of 375~437.5 kHz.


2021 ◽  
Author(s):  
Yujian Ren ◽  
Jingxiang Li ◽  
Yuanzhe Dong ◽  
Dong Jin ◽  
Shengdun Zhao

Abstract High efficiency and good section quality are two main objectives of metal bar cropping. A suitable control method can help to achieve both goals. An investigation of the control method of low-cycle fatigue cropping (LCFC) based on the acoustic emission (AE) technique has been proposed in this study. Ring-down counts and kurtosis are used to monitor the whole process of LCFC. The results showed that kurtosis is more suitable for monitoring the LCFC process and as a critical parameter to optimize the control method than ring-down counts in the noisy factory environment.Moreover, three types of materials are studied in this experiment; by combine with the AE results, macroscopic images and microscopic images of sections, characteristics of various LCFC stages are obtained. The results also indicated reduce the area of the transient fracture zone is the key to improve the section quality. Reducing the load frequency before the unstable crack propagation stage will beneficial to realize the goals. Based on the evaluation of kurtosis, an optimized control method is presented, and two control parameters: transient time T and the critical value of the slope of kurtosis C are determined. For 16Mn, 1045 and Al 6061, the T is 5s, 10s, and 1s, respectively. For 16Mn, 1045, and Al 6061, the C is 100, 300, and 0, respectively. Two parameters, h and S, are used to evaluate the section quality and four control strategies are compared. The results indicate the optimal control methods can improve the section quality effectively. The influence trend of reducing loading frequency is investigated by further comparison. It can be seen as the frequency decreases, the efficiency of the section quality improving decreases. In order to realize the optimal results, different control strategies are adopted for different materials. Strategy 1 (high frequency is 20Hz,high frequency thought the whole process), strategy 2 (high frequency is 20Hz,low frequency is 8.33Hz), and strategy 3 (high frequency is 20Hz,low frequency is 6.67Hz) is suitable for Al 6061, 1045, and 16Mn, respectively.


2021 ◽  
Vol 2113 (1) ◽  
pp. 012016
Author(s):  
Fei Song ◽  
Likun Peng ◽  
Jia Chen ◽  
Benmeng Wang

Abstract In order to realize the nondestructive testing (NDT) of the internal leakage fault of hydraulic spool valves, the internal leakage rate must be predicted by AE (acoustic emission) technology. An AE experimental platform of internal leakage of hydraulic spool valves is built to study the characteristics of AE signals of internal leakage and the relationship between AE signals and leakage rates. The research results show the AE signals present a wideband characteristic. The main frequencies are concentrated in 30~50 kHz and the peak frequency is around 40 kHz. When the leakage rate is large, there are significant signal characteristics appearing in the high frequency band of 75~100 kHz. The exponent of the root mean square(RMS) of AE signals is positively correlated with the exponent of the leakage rate only if the leakage rate is greater than 2~3 mL/min. This find could be used to predict the internal leakage rate of hydraulic spool valves.


2019 ◽  
Vol 9 (3) ◽  
pp. 446
Author(s):  
Huang Yiming ◽  
Deng Jianhui ◽  
Zhu Jun

The decrease of strength after saturation of rocks is known as moisture-induced softening. To date, there are numerous studies on the mechanism of moisture-induced softening of different rocks. However, due to a lack of effective observational methods, the microcosmic mechanism of moisture-induced softening still needs to be understood. We collected and processed acoustic emission (AE) signals during the uniaxial compression test of marble specimens. The results of spectral and statistical analysis show that two dominant frequency bands of AE waveforms exist regardless of the specimen’s water content. Additionally, for the AE signals from the saturated specimens, the ranges of the low and high frequency bands are wider than dried rock samples. Besides, since the tensile and shear failures in the rock release low and high dominant frequency AE signals, respectively, the test results of this paper show that micro-shear and micro-tensile failures dominate the final failure of dried and saturated rocks, respectively.


2020 ◽  
Vol 10 (11) ◽  
pp. 3674
Author(s):  
Jiaoyan Huang ◽  
Zhiheng Zhang ◽  
Cong Han ◽  
Guoan Yang

The Acoustic Emission (AE) is a widely used real-time monitoring technique for the deformation damage and crack initiation of areo-engine blades. In this work, a tensile test for TC11 titanium alloy, one of the main materials of aero-engine, was performed. The AE signals from different stages of this test were collected. Then, the AE signals were decomposed by the Variational Mode Decomposition (VMD) method, in which the signals were divided into two different frequency bands. We calculated the engery ratio by dividing the two different frequency bands to characterize TC11′s degree of deformation. The results showed that when the energy ratio was −0.5 dB, four stages of deformation damage of the TC11 titanium alloy could be clearly identified. We further combined the calculated Partial Energy Ratio (PER) and Weighted Peak Frequency (WPF) to identify the crack initiation of the TC11 titanium alloy. The results showed that the identification accuracy was 96.33%.


Holzforschung ◽  
2015 ◽  
Vol 69 (3) ◽  
pp. 357-365 ◽  
Author(s):  
Franziska Baensch ◽  
Markus G.R. Sause ◽  
Andreas J. Brunner ◽  
Peter Niemz

Abstract Tensile tests on miniature spruce specimens have been performed by means of acoustic emission (AE) analysis. Stress was applied perpendicular (radial direction) and parallel to the grain. Nine features were selected from the AE frequency spectra. The signals were classified by means of an unsupervised pattern recognition approach, and natural classes of AE signals were identified based on the selected features. The algorithm calculates the numerically best partition based on subset combinations of the features provided for the analysis and leads to the most significant partition including the respective feature combination and the most probable number of clusters. For both specimen types investigated, the pattern recognition technique indicates two AE signal clusters. Cluster A comprises AE signals with a relatively high share of low-frequency components, and the opposite is true for cluster B. It is hypothesized that the signature of rapid and slow crack growths might be the origin for this cluster formation.


2011 ◽  
Vol 204-210 ◽  
pp. 1419-1422 ◽  
Author(s):  
Yong Yang

Image fusion is to combine several different source images to form a new image by using a certain method. Recent studies show that among a variety of image fusion algorithms, the wavelet-based method is more effective. In the wavelet-based method, the key technique is the fusion scheme, which can decide the final fused result. This paper presents a novel fusion scheme that integrates the wavelet decomposed coefficients in a quite separate way when fusing images. The method is formed by considering the different physical meanings of the coefficients in both the low frequency and high frequency bands. The fused results were compared with several existing fusion methods and evaluated by three measures of performance. The experimental results can demonstrate that the proposed method can achieve better performance than conventional image fusion methods.


2005 ◽  
Vol 12 (4) ◽  
pp. 237-254
Author(s):  
Yoshihito Kobayashi ◽  
Toshiya Kitamura ◽  
Shinji Yamada

Moulded chairs have been developed, in which sound absorption at low frequency bands is increased by using the seat section and/or the back section as a resonator. In addition, a translucent sound absorption panel has been developed for application in large spaces. In the case of the chairs the resonance frequency, determined by the position, number, and depth of the holes, was examined. Prototypes were constructed, and the equivalent absorption area was measured in a reverberation room. The resonators of the chairs achieved an equivalent absorption area of 0.15 m2/seat, in the 125 Hz band. For the case of the translucent material, sound absorption was measured and compared with conventional sound absorption materials. The panels were designed in order to control sound fields in large spaces. The panels achieved a sound absorption coefficient of 0.6 to 1.0 at middle and high frequency bands.


Sign in / Sign up

Export Citation Format

Share Document