A STUDY ON FRETTING BEHAVIOR IN ROOM TEMPERATURE FOR INCONEL ALLOY 690

2006 ◽  
Vol 20 (25n27) ◽  
pp. 4303-4308 ◽  
Author(s):  
JAE DO KWON ◽  
YOUNG SUCK CHAI ◽  
YONG TAK BAE ◽  
SUNG JONG CHOI

The initial crack under fretting condition occurs at lower stress amplitude and lower cycles of cyclic loading than that under plain fatigue condition. The fretting damage, for example, can be observed in fossil and nuclear power plant, aircraft, automobile and petroleum chemical plants etc. INCONEL alloy 690 is a high-chromium nickel alloy having excellent resistance to many corrosive aqueous media and high-temperature atmospheres. This alloy is used extensively in the industries of nuclear power, chemicals, heat-treatment and electronics. In this paper, the effect of fretting damage on fatigue behavior for INCONEL alloy 690 was studied. Also, various kinds of tests on mechanical properties such as hardness, tension and plain fatigue tests are performed. Fretting fatigue tests were carried out with flat-flat contact configuration using a bridge type contact pad and plate type specimen. Through these experiments, it is found that the fretting fatigue strength decreased about 43% compared to the plain fatigue strength. In fretting fatigue, the wear debris is observed on the contact surface, and the oblique micro-cracks are initiated at an earlier stage. These results can be used as the basic data in a structural integrity evaluation of heat and corrosion resistant alloy considering fretting damages.

2006 ◽  
Vol 321-323 ◽  
pp. 703-706 ◽  
Author(s):  
Dae Kyu Park ◽  
Yong Tak Bae ◽  
Sung Jong Choi ◽  
Young Suck Chai ◽  
Jae Do Kwon

The initial crack under fretting condition occurs at lower stress amplitude and at lower cycles of cyclic loading than that under plain fatigue condition. INCONEL alloy 600 and 690 are high–chromium nickel alloy having excellent resistance to many corrosive aqueous media and high-temperature atmospheres. In this paper, the effect of fretting damage on fatigue behavior for INCONEL alloy 600 and 690 were studied. Also, various kinds of mechanical tests such as hardness, tension and plain fatigue tests are performed. Fretting fatigue tests were carried out with flat-flat contact configuration using a bridge type contact pad and plate type specimen. Through these experiments, it is found that the fretting fatigue strength decreased about 40~70% compared to the plain fatigue strength in two materials. In fretting fatigue, the wear debris is observed on the contact surface, and the oblique micro-cracks at an earlier stage are initiated. These results can be used as basic data in a structural integrity evaluation of heat and corrosion resisting alloy considering fretting damages.


2008 ◽  
Vol 22 (11) ◽  
pp. 851-856
Author(s):  
JAE-DO KWON ◽  
DAE-KYU PARK ◽  
SEUNG-WAN WOO ◽  
YOUNG-SUCK CHAI

Studies on the strength and fatigue life of machines and structures have been conducted in accordance with the development of modern industries. In particular, fine and repetitive cyclic damage occurring in contact regions has been known to have an impact on fretting fatigue fractures. The main component of zircaloy alloy is Zr , and it possesses good mechanical characteristics at high temperatures. This alloy is used in the fuel rod material of nuclear power plants because of its excellent resistance. In this paper, the effect of the fretting damage on the fatigue behavior of the zircaloy alloy is studied. Further, various types of mechanical tests such as tension and plain fatigue tests are performed. Fretting fatigue tests are performed with a flat-flat contact configuration using a bridge-type contact pad and plate-type specimen. Through these experiments, it is found that the fretting fatigue strength decreases by about 80% as compared to the plain fatigue strength. Oblique cracks are observed in the initial stage of the fretting fatigue, in which damaged areas are found. These results can be used as the basic data for the structural integrity evaluation of corrosion-resisting alloys considering the fretting damages.


2007 ◽  
Vol 353-358 ◽  
pp. 89-93 ◽  
Author(s):  
Dae Kyu Park ◽  
Seung Wan Woo ◽  
Yong Tak Bae ◽  
Il Sup Chung ◽  
Young Suck Chai ◽  
...  

Mechanical breakdown often comes from the fatigue in many structural parts and nuclear power plants. Among the fatigue phenomenon, especially fretting fatigue occurs in mechanical joints showing small relative movements between contact surfaces. Although the research was developed for one hundred years, occurrence mechanism is not clearly identified yet. INCOLOY alloy 800 is a iron-nickel-chromium alloy having excellent resistance to many corrosive aqueous media and high-temperature atmospheres. This alloy is used extensively in the nuclear power plants industry, the chemical industry, the heat-treating industry and the electronic industry. In this paper, the effect of fretting damage on fatigue behavior for INCOLOY alloy 800 was studied. Also, various kinds of mechanical tests such as tension and plain fatigue tests are performed. Fretting fatigue tests were carried out with flat-flat contact configuration using a bridge type contact pad and plate type specimen. Through these experiments, it is found that the fretting fatigue strength decreased about 50% compared to the plain fatigue strength. In fretting fatigue, the oblique micro-cracks at an earlier stage are initiated. These results can be used as basic data in a structural integrity evaluation of heat and corrosion resisting alloy considering fretting damages.


2006 ◽  
Vol 326-328 ◽  
pp. 1059-1062
Author(s):  
Byeong Choon Goo

In general, structural integrity of rolling stock structures should last more than 25 years. During the lifetime corrosive degradation occurs. For structural design and diagnosis, quantitative relationship between corrosive degradation and variation of mechanical properties such as tensile strength and fatigue strength is needed. In this study, electrochemical corrosion tests, atmospheric corrosion tests and fatigue tests of corroded specimens were carried out. The electrochemical characteristics of SS400, SM490A, SUS205L and SUS304 were examined. At regular intervals tensile and fatigue tests were carried out by using specimens of SM490A and SS400 on the atmospheric corrosion test bed. The fatigue strength decreases as the atmospheric corrosion period increases. In addition, the effect of heat treatment on the tensile and fatigue behavior was studied.


2011 ◽  
Vol 25 (12) ◽  
pp. 1567-1576
Author(s):  
M. S. RAHMAN ◽  
S. TANIMOTO ◽  
D. YONEKURA ◽  
R. MURAKAMI

An experimental investigation was conducted to examine the fretting fatigue behavior of physical vapor deposition-coated CrN film deposited on Ti - 6Al - 4V specimens contacted on both sides with pads of the same material. Behavior against the CrN -coated specimens was characterized through the determination of fretting fatigue strength up to 107 cycles. Fretting damage of specimen surface was characterized by SEM and surface profilometer. The experimental results from the S – N tests indicate that the CrN coating is effective to improve the fretting fatigue strength until about 106 cycles, but over 106 cycles, the strength is lower than that of uncoated specimens. The enhanced fretting fatigue resistance can be attributed to the improved hardness of the CrN film due to change of bias voltage during the film deposition. It has also been concluded that below and about 106 cycles, there is smaller influence of bias voltage on fatigue strength, whereas, over 106 cycles, fatigue strength is clearly changed by bias voltage as well as contact pressure.


1981 ◽  
Vol 103 (3) ◽  
pp. 218-222 ◽  
Author(s):  
C. J. Poon ◽  
D. W. Hoeppner

A completely randomized factorial experiment was conducted to investigate the environmental and cyclic stress effects on the fretting fatigue behavior of 7075-T6 aluminum alloy. Fretting fatigue tests were conducted in vacuum (10−5 Torr) and in laboratory air environment at two maximum cyclic stress levels. The fractographic features of the wear surface with respect to different environments were examined. The experimental results and statistical analysis showed that the environment, cyclic stress, and their interactions were significant factors in reducing the life of 7075-T6 aluminum alloy under fretting conditions. The fractographic analysis showed that fretting damage led to the development of cracks in the fretting areas in both environments. However, the mechanisms involved in crack development were different. The reduction in fatigue life under fretting condition was explained by a model utilizing fracture mechanics concepts.


2004 ◽  
Vol 261-263 ◽  
pp. 1221-1226 ◽  
Author(s):  
Jae Do Kwon ◽  
Sang Jin Cho ◽  
Yong Tak Bae

The aged degradation of material is observed when heat-resisting steel is exposed for long periods of time at high temperatures. In the present study, the degraded 1Cr-0.5Mo steel that is used for long periods of time at high temperature(about 515°C) and artificially reheat-treated materials are prepared. These materials were used to study the effect of aged degradation on fretting fatigue behavior. Through this experiment, it is found that the fretting fatigue strength of reheat-treated 1Cr-0.5Mo steel is approximately 46 percent lower than that of the plain fatigue strength of the same material. Furthermore, the fretting fatigue strength of degraded 1Cr-0.5Mo steel was less than 53 percent of the same material™s plain fatigue strength. The maximum value of fatigue strength difference is observed as 57 percent between the fretting fatigue of degraded material and plain fatigue of reheat-treated material. These results can be used as basic data in a structural integrity evaluation of heat-resisting steel considering aged degradation effects.


2018 ◽  
Vol 165 ◽  
pp. 06001 ◽  
Author(s):  
André Reck ◽  
Stefan Pilz ◽  
Ulrich Thormann ◽  
Volker Alt ◽  
Annett Gebert ◽  
...  

This study examined the fatigue properties of a newly developed cast and thermomechanical processed (β)-Ti-40Nb alloy for a possible application as biomedical alloy due to exceptional low Young’s modulus (64-73 GPa), high corrosion resistance and ductility (20-26%). Focusing on the influence of two microstructural states with fully recrystallized β-grain structure as well as an aged condition with nanometer-sized ω-precipitates, tension-compression fatigue tests (R=-1) were carried out under lab-air and showed significant differences depending on the β-phase stability under cyclic loading. Present ω- precipitates stabilized the β-phase against martensitic α’’ phase transformations leading to an increased fatigue limit of 288 MPa compared to the recrystallized state (225 MPa), where mechanical polishing and subsequent cyclic loading led to formation of α’’-phase due to the metastability of the β-phase. Additional studied commercially available (β)-Ti-45Nb alloy revealed slightly higher fatigue strength (300 MPa) and suggest a change in the dominating cyclic deformation mechanisms according to the sensitive dependence on the Nb-content. Further tests in simulated body fluid (SBF) at 37°C showed no decrease in fatigue strength due to the effect of corrosion and prove the excellent corrosion fatigue resistance of this alloy type under given test conditions.


2021 ◽  
Vol 1016 ◽  
pp. 125-131
Author(s):  
Masahiro Goto ◽  
T. Yamamoto ◽  
S.Z. Han ◽  
J. Kitamura ◽  
J.H. Ahn ◽  
...  

On the thermomechanical treatments of Cu-Ni-Si alloy, cold-rolling (CR) before solution heat treatment (SHT) is commonly conducted to eliminate defects in a casting slab. In addition, a rolling is applied to reduce/adjust the thickness of casting slab before SHT. In a heavily deformed microstructure by CR, on the other hand, grain growth during a heating in SHT is likely to occur as the result of recrystallization. In general, tensile strength and fatigue strength tend to decrease with an increase in the grain size. However, the effect of difference in grain sizes produced by with and without CR before SHT on the fatigue strength is unclear. In the present study, fatigue tests of Cu-6Ni-Si alloy smooth specimens with a grain fabricated through different thermomechanical processes were conducted. The fatigue behavior of Cu-Ni-Si alloy was discussed.


2010 ◽  
Vol 452-453 ◽  
pp. 797-800
Author(s):  
M. Jayaprakash ◽  
Yoshiharu Mutoh ◽  
K. Asai ◽  
Kunihiro Ichikawa ◽  
Shigeo Sakurai

Stress distribution at the contact edge is known to have a dominant influence on fretting fatigue strength. Stresses acting on the contact surface are tangential stress and compressive stress. In the present study, fretting fatigue strengths of 12 Cr steel specimen under two different mean stresses have been predicted based on the generalized tangential stress range - compressive stress range diagram. The generalized tangential stress range - compressive stress range diagram was obtained by carrying out fretting fatigue tests and finite element analysis using various steel specimens with various geometries of contact pad from the previous studies. The predicted fretting fatigue strengths were in good agreement with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document