Thermal annealing induced multiple phase in V/V2O5 alternating multilayer structure

2016 ◽  
Vol 30 (27) ◽  
pp. 1650210 ◽  
Author(s):  
B. Ilahi ◽  
M. Abdel-Rahman ◽  
Z. Zaaboub ◽  
M. F. Zia ◽  
M. Alduraibi ◽  
...  

In this paper, we report on microstructural, optical and electrical properties of alternating multilayer of vanadium pentoxide (V2O5), 25 nm, and vanadium (V), 5 nm, thin films deposited at room temperature by radio frequency (RF) and DC magnetron sputtering, respectively. Raman and photoluminescence (PL) spectroscopy have been employed to investigate the effects of thermal annealing for 20, 30 and 40 min at 400[Formula: see text]C in Nitrogen (N2) atmosphere on the multiple phase formation and its impact on the film resistance and temperature coefficient of resistance (TCR). We demonstrate that the oxygen free annealing environment allows the formation of multiple phases including V2O5, V6O[Formula: see text] and VO2 through oxygen diffusion and consequent deficiency in V2O5 layer.

2002 ◽  
Vol 716 ◽  
Author(s):  
S. Nam ◽  
S.W. Nam ◽  
J.H. Yoo ◽  
D.H. Ko

AbstractWe investigated the evolution of the physical and electrical properties of HfO2 thin films deposited by the reactive DC magnetron sputtering method on the (100) silicon substrate upon annealing. The HfO2 thin films deposited at room temperature were amorphous, while the films after annealing were poly crystalline. The crystallization temperature of the HfO2 thin films was dependent on the annealing methods (RTP or Furnace) and ambient (nitrogen or oxygen). The microstructures of HfO2 thin gate oxides of Tox <15A thick were analyzed by HRTEM, XPS and XRD. We also focused on the interfacial layer between HfO2 thin films and silicon substrates. Due to its high oxygen diffusivity, any annealing led to oxygen diffusion rapidly through the HfO2 films. The EOT increased upon annealing due to the increased SiO2-containing layer. The HfO2 thin films deposited at room temperature have the undesirable interfacial states due to the surface damage by sputtering. We found that the HfO2 thin films <15A thick were optimized by RTP or furnace annealing.


1995 ◽  
Vol 249 (3-4) ◽  
pp. 289-292 ◽  
Author(s):  
B. Pashmakov ◽  
K. Zhang ◽  
H.M. Jaeger ◽  
P. Tiwari ◽  
X.D. Wu

2010 ◽  
Vol 1245 ◽  
Author(s):  
Reza Anvari ◽  
Qi Cheng ◽  
Muhammad Lutful Hai ◽  
Truc Phan Bui ◽  
A. J. Syllaios ◽  
...  

AbstractThis paper presents the formation and the characterization of silicon germanium oxide (SixGeyO1-x-y) infrared sensitive material for uncooled microbolometers. RF magnetron sputtering was used to simultaneously deposit Si and Ge thin films in an Ar/O2 environment at room temperature. The effects of varying Si and O composition on the thin film's electrical properties which include temperature coefficient of resistance (TCR) and resistivity were investigated. The highest achieved TCR and the corresponding resistivity at room temperature were -5.41 %/K and 3.16×103 ohm cm using Si0.039Ge0.875O0.086 for films deposited at room temperature.


2009 ◽  
Vol 2009 ◽  
pp. 1-5 ◽  
Author(s):  
G. Kiriakidis ◽  
K. Moschovis ◽  
I. Kortidis ◽  
R. Skarvelakis

InOxthin films with a thickness of the order of 100 nm were grown by dc magnetron sputtering on glass, Si and flexible (PET) substrates. The electrical conductivity ofInOxthin films exhibited a change of two orders of magnitude during photoreduction with ultraviolet light and subsequent oxidation in ozone concentrations from 2370 to 15 ppb, at room temperature. Optical transparency of over 85% for all substrates was maintained. Film structural and ozone sensing properties were analyzed. Surface morphology investigations carried out by SEM for films on PET substrates showed extended surface cracking for bending angles beyond40∘. Optimization of growth conditions has led to films with extremely low detection levels for ozone down to 15 ppb at room temperature, demonstrating the wide prospective of utilizing these metal oxides as gas sensors on flexible substrates for a variety of automotive and air-conditioning applications.


Sign in / Sign up

Export Citation Format

Share Document