The effect of substrate bias on the characteristics of CrN coatings deposited by DC-superimposed HiPIMS system

2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744032 ◽  
Author(s):  
X. Zuo ◽  
F. Xia ◽  
D. Zhang ◽  
P. L. Ke ◽  
Q. M. Wang ◽  
...  

Chromium nitride coatings were prepared by reactive DC-superimposed high-power-impulse magnetron sputtering (HiPIMS) system. The influence of substrate bias on the microstructure and mechanical properties of CrN coatings was investigated. XRD and cross-sectional SEM were utilized to characterize the film structures. Mechanical properties were characterized by nanoindentation and Vickers indentation test. The results revealed that the microstructure and mechanical properties of CrN coatings were affected by bias voltage. The CrN coatings exhibited dense and fine columnar grain structure with the hardness of about 18.7 GPa. The fracture toughness of CrN coatings was around 3.16 MPa ⋅ m[Formula: see text]. However, further increase of the bias voltage from −250 V to −300 V led to the degradation of coating properties.

2020 ◽  
Vol 528 ◽  
pp. 146966
Author(s):  
S. Mirzaei ◽  
M. Alishahi ◽  
P. Souček ◽  
V. Buršíková ◽  
L. Zábranský ◽  
...  

2013 ◽  
Vol 591 ◽  
pp. 99-103 ◽  
Author(s):  
Hao Zhang ◽  
Shu Wang Duo ◽  
Xiang Min Xu ◽  
Huan Ke ◽  
Ting Zhi Liu ◽  
...  

CrN coatings have been deposited successfully by Closed Filed Unbalanced Magnetron Sputter Ion Plating (CFUMSIP). The effect of substrate temperature (TS) and bias voltage (VB) together on microstructure, morphologies and mechanical properties of CrN coatings were studied. The results showed that the deposition rate of CrN coatings declines with the increase of VB Under both room temperature (R.M.) and 300°C. The FCC-CrN disappeared gradually and orth-CrN arised with the increase of VB, and the TS promoted the transformation from FCC - CrN to orth - CrN. The surface morphology of CrN coatings with changed VBs was greatly different, and VB could further improve the mechanical properties of coatings. In this paper, the CrN coating with the parameters (TS =300°C, VB =-30V) had relatively high deposition rate and mechanical properties.


2012 ◽  
Author(s):  
A. Mallikarjuna Reddy ◽  
Ch. Seshendra Reddy ◽  
Y. Ashok Kumar Reddy ◽  
R. Lydia ◽  
P. Sreedhara Reddy ◽  
...  

2014 ◽  
Vol 783-786 ◽  
pp. 761-765 ◽  
Author(s):  
Dan Wang ◽  
Kun Wang ◽  
Zi Mu Shi ◽  
Fu Sheng Han

A directionally solidified TWIP steel (Fe-25Mn-2.5Al-2.5Si) was prepared by liquid metal cooling technology. The microstructure and mechanical behavior were examined and compared with usually solidified samples. The directionally solidified TWIP steel shows a typical columnar grain structure, and the maximum true stress and true strain along the longitudinal direction of the sample are 1060MPa and 71% respectively. As a comparison, the usually solidified samples shows an equiaxed grain microstructure with the maximum true stress and true strain of only 994MPa and 58%, respectively. Moreover, the two solidification modes also lead to very different strain hardening behavior, particularly in the changes of strain hardening rate with strain. This suggests that the grain boundary plays a key role in the mechanical properties of TWIP steels, and changing the grain boundaries can be effective to improve the comprehensive mechanical properties of TWIP steels.


Sign in / Sign up

Export Citation Format

Share Document