Anode-supported BaZr0.8Y0.2O3−δ membranes by tape casting and suspension spraying

2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744062 ◽  
Author(s):  
Jin Xiao ◽  
Hongchun Yuan ◽  
Lei Chen ◽  
Chao Xiong ◽  
Jinxiang Ma ◽  
...  

Dense BaZr[Formula: see text]Y[Formula: see text]O[Formula: see text] (BZY) proton-conducting electrolyte membranes are successfully fabricated on NiO–BaZr[Formula: see text]Ce[Formula: see text]Y[Formula: see text]O[Formula: see text](NiO–BZCY) using tape casting combined with suspension spraying technique. The NiO–BZCY anode substrates were prepared by the tape-casting method and the BZY electrolyte membranes were prepared on the NiO-BZCY anodes by suspension spraying. The thermal decomposition of the anode green tape prepared by tape casting was investigated by thermogravimetry-differential thermal analysis while the phase structure and the morphology of the anode/electrolyte bi-layers were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). No obvious reaction was found between NiO and BZCY in anode substrates and gas-tight BZY membranes were achieved after co-sintering at 1450[Formula: see text]C. With Sm[Formula: see text]Sr[Formula: see text]CoO[Formula: see text]–Ce[Formula: see text]Sm[Formula: see text]O[Formula: see text](SSC–SDC) as the composite cathode, a maximum power density of 121 mW cm[Formula: see text] was obtained at 650[Formula: see text]C for the single cell with 23 [Formula: see text]m thick BZY electrolyte. Resistances of the tested cell were investigated under open circuit conditions at different operating temperatures by impedance spectroscopy.

Author(s):  
Mingqiang Zhong ◽  
Qin Feng ◽  
Changlai Yuan ◽  
Xiao Liu ◽  
Baohua Zhu ◽  
...  

AbstractIn this work, the (1−x)Bi0.5Na0.5TiO3-xBaNi0.5Nb0.5O3 (BNT-BNN; 0.00 ⩽ x ⩽ 0.20) ceramics were prepared via a high-temperature solid-state method. The crystalline structures, photovoltaic effect, and electrical properties of the ceramics were investigated. According to X-ray diffraction, the system shows a single perovskite structure. The samples show the normal ferroelectric loops. With the increase of BNN content, the remnant polarization (Pr) and coercive field (Ec) decrease gradually. The optical band gap of the samples narrows from 3.10 to 2.27 eV. The conductive species of grains and grain boundaries in the ceramics are ascribed to the double ionized oxygen vacancies. The open-circuit voltage (Voc) of ∼15.7 V and short-circuit current (Jsc) of ∼1450 nA/cm2 are obtained in the 0.95BNT-0.05BNN ceramic under 1 sun illumination (AM1.5G, 100 mW/cm2). A larger Voc of 23 V and a higher Jsc of 5500 nA/cm2 are achieved at the poling field of 60 kV/cm under the same light conditions. The study shows this system has great application prospects in the photovoltaic field.


2021 ◽  
Vol 19 (11) ◽  
pp. 66-71
Author(s):  
Maithm A. Obaid ◽  
Suha A Fadaam ◽  
Osama S. Hashim

The aim of this study is to prepare gold nanoparticles by a simple chemical method at a temperature of 70°C. The solution was dried on glass basest by Casting method, the rate of five drops per sample At a temperature 100 C. Then the structural and optical properties have been confirmed by X-ray diffraction, scanning electron microscopy (SEM) and Transmission Electron microscope (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and spectrum.


2021 ◽  
Vol 317 ◽  
pp. 426-433
Author(s):  
Siti Nurhaziqah Abd Majid ◽  
Afiqah Qayyum Ishak ◽  
Nik Aziz Nik Ali ◽  
Muhamad Zalani Daud ◽  
Hasiah Salleh

The development of biopolymer electrolytes based on methylcellulose (MC) has been accomplished by incorporating ammonium bromide (NB) to the polymer-salt system. The biopolymer electrolytes were prepared via solution-casting method. The conductivity and permittivity characteristics of the material were studied. The biopolymer-salt complex formation have been analysed through Fourier Transform Infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The conductivity of the sample was measured by EIS HIOKI. Upon addition of 20 wt.% of NB, highest conductivity of 3.25×10-4 μScm-1 was achieved at ambient temperature. The temperature dependence of the biopolymer electrolytes exhibit Arrhenius behaviour. This result had been further proven in FTIR study.


2012 ◽  
Author(s):  
Ανδρόνικος Μπαλάσκας

Υβριδικές επιστρώσεις οργανικά τροποποιημένων πυριτικών ενώσεων και εποξειδικώνρητινών (Organically Modified Silicates, ORMOSILs – epoxy) εφαρμόστηκαν στο κράμααργιλίου 2024-Τ3 και σε γαλβανισμένο χάλυβα σε υψηλές θερμοκρασίες (Hot Dip GalvanizedSteel, HDGS) προκειμένου αυτές να προστατεύσουν τα υποστρώματα από τη διάβρωση. Για τηνβελτίωση της αντοχής των επιστρώσεων στην διάβρωση ενσωματώθηκαν στην πολυμερικήμήτρα νανοπεριέκτες από μολυβδαινικό δημήτριο (CeMo) και οξείδιο του τιτανίου (TiO2),καθώς και pH-ευαίσθητα οργανικά νανοδοχεία πληρωμένα με τους αναστολείς διάβρωσης 2-μερκαπτοβενζοθειαζόλιο, 8-υδροξυκινολίνη, 1H-βενζοτριαζολο-4-σουλφονικό οξύ καιεξαφλουοροτιτανικό οξύ.Οι υβριδικές επιστρώσεις εφαρμόστηκαν στο υπόστρωμα με τη διαδικασία εμβάπτισης.Η μορφολογία των επιστρώσεων εξετάστηκε με ηλεκτρονική μικροσκοπία σάρωσης (ScanningElectron Microscopy (SEM)). Η σύνθεση και η δομή τους μελετήθηκε με υπέρυθρηΦασματοσκοπία μετασχηματισμού Fourier (FT-IR) και με μικροανάλυση με φθορισμομετρίαακτίνων Χ (Energy Dispersive X-Ray Analysis (EDX)). H ηλεκτροχημική φασματοσκοπίασύνθετης αντίστασης (Electrochemical Impedance Spectroscopy, EIS), η dc-πόλωση (dcpolarization)και η μέτριση ανοικτού δυναμικού (open circuit potential, OCP) χρησιμοποιήθηκανγια την αξιολόγηση των αντι-διαβρωτικών ιδιοτήτων των επιστρώσεων. Τα αποτελέσματαέδειξαν ότι οι επιστρώσεις με πληρωμένα νανοδοχεία έχουν αυξημένες αντιδιαβρωτικέςιδιότητες συγκριτικά με τις υπόλοιπες επιστρώσεις εμφανίζοντας και ιδιότητες αυτο-θεραπείας.Τέλος, συντέθηκαν νανόσφαιρες οξειδίου του χαλκού (Cu2O), οι οποίεςχαρακτηρίστηκαν με SEM, ηλεκτρονική μικροσκοπία διερχόμενης δέσμης (ΤransmissionΕlectron Μicroscopy (TEM)) και περίθλαση ακτίνων Χ (X ray Diffraction (XRD)). Οινανόσφαιρες στη συνέχεια πληρώθηκαν με ουσίες που δρουν ως βιοκτόνα και ενσωματώθηκανσε βαφές εμπορίου και σε επιστρώσεις βασισμένες σε εποξειδικές ενώσεις και μελετήθηκε ηδράση τους ως αντιαποθετικά αντιδραστήρια. Τα αποτελέσματα έδειξαν ότι οι επιστρώσεις μεπληρωμένες νανόσφαιρες Cu2O είχαν μεγαλύτερη αποτελεσματικότητα σε σύγκριση με τιςβαφές εμπορίου με βιοκτόνα μετά από έκθεση σε θαλάσσιο περιβάλλον.


2021 ◽  
Vol 21 (7) ◽  
pp. 3800-3805
Author(s):  
Abdul Razzaq ◽  
Muhammad Zafar ◽  
Tahir Saif ◽  
Jun Young Lee ◽  
Jung Ki Park ◽  
...  

In this investigation we report the formation of thin ZnO recombination barrier layer at TiO2/CdS interface aimed for the improvement in performance of CdS sensitized solar cell. The film was deposited upon nanocrystalline mesoporous TiO2 surface by following a simple chemical process and characterized, using UV-Visible spectroscopy, X-ray diffraction and electron dispersive X-ray measurements. The insertion of ZnO thin layer enhances the QDSC (Quantum dot sensitized solar cell) performance, contributed mainly by an increase in open circuit voltage (Voc) due to reduced electron back transfer from TiO2 conduction band. Moreover, the analysis of photovoltaic characteristics upon increasing the thickness of the ZnO film reveals that the ZnO recombination barrier layer with optimum thickness at porous TiO2/CdS interface proved to be an effective potential barrier for minimizing electron back recombination.


Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1080
Author(s):  
Aghiles Hammas ◽  
Gisèle Lecomte-Nana ◽  
Imane Daou ◽  
Nicolas Tessier-Doyen ◽  
Claire Peyratout ◽  
...  

In recent decades, talc and kaolinite have been widely used as raw materials for the ceramic industry. In this study, the final characteristics of kaolinitic clay mixed with 6 mass% of magnesite obtained in our previous work were compared with those obtained with mixtures of kaolin (kaolin BIP) and talc (as the source of magnesium oxide). However, different amounts of talc in the kaolin powder were studied, namely 10, 30, and 50 mass% of added talc (with respect to kaolin + talc). The tape casting process was used during this work in order to manufacture the green tapes in an aqueous system with 0.2 mass% of dispersant. Subsequently, the green tapes were heated to 1000 and 1100 °C with a dwelling time of 12 min. The green and sintering tapes were characterized using the following techniques: DTA/TG, X-ray diffraction, porosity, and flexural strength analyses. The results obtained from our previous work indicate that the specimen with 6 mass% of MgCO3 sintered at 1200 °C for 3 h exhibited the best performances, with high flexural strength and weak porosity value—117 MPa and 27%—respectively. As results from this study, the optimal mechanical and thermal properties of sintering tapes were obtained for the specimen with 10 mass% of added talc sintered at 1100 °C. Indeed, this specimen exhibited 50 MPa and 43% of stress to rupture and apparent porosity, respectively.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Mohd Imran Ahamed ◽  
Inamuddin ◽  
Abdullah M. Asiri ◽  
Mohammad Luqman ◽  
Lutfullah

Poly(3,4-ethylene dioxythiophene): polystyrene sulfonate (PEDOT: PSS) zirconium(IV) phosphate (ZrP) based ionomeric membrane was prepared by a solution-casting method. Subsequently, aniline polymerization was carried out on the surface of the membrane by oxidative chemical polymerization. It was characterized by thermogravimetric analysis/differential thermal analysis/differential thermogravimetry (TGA/DTA/DTG), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis, and Fourier-transform infrared (FTIR) spectroscopy. The membrane was also characterized by ion-exchange properties. The tip displacement investigation of the ionomeric membrane was also carried out. The outcomes demonstrated that the manufactured ionomeric membrane could produce generative strengths (tip powers), and consequently create good displacement. In this manner, the proposed ionomeric membrane was found proper for bending movement actuator that will give a successful and promising stage for smaller-scale mechanical applications.


2011 ◽  
Vol 471-472 ◽  
pp. 179-184 ◽  
Author(s):  
Raharjo Jarot ◽  
Andanastuti Muchtar ◽  
Wan Ramli Wan Daud ◽  
Norhamidi Muhamad ◽  
Edy Herianto Majlan

Composite cathodes made of perovskite La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) and SDC carbonates (SDC-(Li/Na)2CO3) were investigated in relation to their structure, morphology, thermal expansion coefficient and porosity. As a first step, the LSCF powder was prepared by sol-gel technique. This was followed by the preparation of the LSCF-SDC carbonates composite cathode by mixing the LSCF with SDC-(Li/Na)2CO3 electrolyte via solid state reaction in various compositions, i.e. 30, 40 and 50 wt.%, namely 70LSCF-30SDC7030, 60LSCF-40SDC7030 and 50LSCF-50SDC7030, respectively. The powder mixtures were then calcined at 680oC. The resultant powder was fine with surface area of about 3.39-7.42 m2/g and particle size of 0.56-0.66µm. The powder consists of two distinct phases, i.e. LSCF and SDC-(Li/Na)2CO3 as confirmed with x-ray diffraction. The microstructures were observed under scanning electron microscopy (SEM). Increasing the amount of the SDC-(Li/Na)2CO3 electrolyte in the composite cathode was found to bring the thermal expansion of the cathode closer to that of the electrolyte. The cathode pellets were later compacted at different pressures (27, 32 and 37 MPa) and sintered at 600oC. The optimum porosity (20.99-24.98%) was achieved for samples with SDC-(Li/Na)2CO3 content of 30-50% sintered at 600oC and cold pressed at 37 MPa.


2010 ◽  
Vol 146-147 ◽  
pp. 1233-1237
Author(s):  
Bin Sun ◽  
Yi Feng Chen ◽  
Kai Xiong Xiang ◽  
Wen Qiang Gong ◽  
Han Chen

Li0.99Gd0.01FePO4/C composite was prepared by solid-state reaction, using particle modification with amorphous carbon from the decomposition of glucose and lattice doping with supervalent cation Gd3+. All samples were characterized by X-ray diffraction, scanning electron microscopy, multi-point Brunauer Emmett and Teller methods. The electrochemical tests show Li0.99Gd 0.01FePO4/C composite obtains the highest discharge specific capacity of 154 mAh.g-1 at C/10 rate and the best rate capability. Its specific capacity reaches 131 mAh.g-1 at 2 C rate. Its capacity loss is only 14.9 % when the rate varies from C/10 to 2 C.


Sign in / Sign up

Export Citation Format

Share Document