Theoretical study of phonon dispersion, elastic, mechanical and thermodynamic properties of barium chalcogenides

2018 ◽  
Vol 32 (08) ◽  
pp. 1850092 ◽  
Author(s):  
A. A. Musari ◽  
S. A. Orukombo

Barium chalcogenides are known for their high-technological importance and great scientific interest. Detailed studies of their elastic, mechanical, dynamical and thermodynamic properties were carried out using density functional theory and plane-wave pseudo potential method within the generalized gradient approximation. The optimized lattice constants were in good agreement when compared with experimental data. The independent elastic constants, calculated from a linear fit of the computed stress–strain function, were used to determine the Young’s modulus (E), bulk modulus (B), shear modulus (G), Poisson’s ratio ([Formula: see text]) and Zener’s anisotropy factor (A). Also, the Debye temperature and sound velocities for barium chalcogenides were estimated from the three independent elastic constants. The calculations of phonon dispersion showed that there are no negative frequencies throughout the Brillouin zone. Hence barium chalcogenides have dynamically stable NaCl-type crystal structure. Finally, their thermodynamic properties were calculated in the temperature range of 0–1000 K and their constant-volume specific heat capacities at room-temperature were reported.

2019 ◽  
Vol 4 (1) ◽  
pp. 23
Author(s):  
Miloud IBRIR

In this work, density functional theory plane-wave full potential method, with local density approximation (LDA) are used to investigate the structural, mechanical and thermodynamic properties of of zincblende III-X ( X= As, Sb) compends. Comparison of the calculated equilibrium lattice constants and experimental data shows very good agreement. The elastic constants were determined from a linear fit of the calculated stress-strain function according to Hooke’s law. From the elastic constants, the bulk modulus B, shear modulus G, Young’s modulus E, Poisson’s ratio σ, anisotropy factor A, the ratio B/G and the hardness parameter H for zincblende III-X ( X= As, Sb) compound are obtained. Our calculated elastic constants indicate that the ground state structure of III-X ( X= As, Sb) is mechanically stable. The sound velocities and Debye temperature are also predicted from elastic constants.


2015 ◽  
Vol 29 (01) ◽  
pp. 1450256 ◽  
Author(s):  
Wen Huang ◽  
Haichuan Chen

The elastic and thermodynamic properties of Re C 2 (Re = Ho , Nd , Pr ) have been investigated by using the first-principles density functional theory within the generalized gradient approximation. The computed lattice constants of Re C 2 are in agreement with the experimental data. The calculated elastic constants reveal that all compounds are mechanically stable. The shear modulus, Young's modulus, Poisson's ratio σ, the ratio B/G, shear anisotropy and elastic anisotropy are also calculated. Finally, the Vicker hardness, Debye temperature, melting point and thermal conductivity have been predicted.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
N. K. Omboga ◽  
C. O. Otieno ◽  
P. W. O. Nyawere

We present results on the first principle study of the elastic constants and the phonon dispersion of EuFe2As2 at zero pressure. The ground-state energy calculations were performed within Density Functional Theory (DFT) and the generalized gradient approximation using the pseudopotential method with plane-wave basis sets. The projector augmented-wave (PAW) pseudopotentials were used in our calculation. The open source code QUANTUM ESPRESSSO was used with its pseudopotential database. The study on the elastic constants at zero pressure was a clear indication that the compound is mechanically stable, and the phonon dispersion study also indicated that the compound is dynamically stable. The elastic constants and mechanical properties also led to the conclusion that the compound is ductile and anisotropic.


2013 ◽  
Vol 333-335 ◽  
pp. 1955-1958
Author(s):  
Chao Xu ◽  
Dong Chen

In this paper, we investigate the structural, electronic and elastic properties of rutile using the ultra-soft pseudo-potential scheme in the framework of density functional theory, together with the generalized gradient approximation. The calculated lattice constants and elastic constants are generally consistent with the other results. Our aim is twofold. First, density functional theory is a fine theory that can obtain reliable results. Second, rutile can be used in the modern industry, thus it should be carefully investigated. The elastic constants dependences on pressure are calculated. It is found that rutile is stable in the pressure range of 020Gpa. The anisotropy of this compound increases with applied pressure. Besides, the analysis of band structure is also given. The calculated band structure shows that rutile belongs to direct-forbidden-gap semiconductors.


2011 ◽  
Vol 25 (07) ◽  
pp. 473-486 ◽  
Author(s):  
M. LABIDI ◽  
H. MERADJI ◽  
S. GHEMID ◽  
S. LABIDI ◽  
F. EL HAJ HASSAN

On the basis of ab initio calculations employing density functional theory (DFT), we investigate the structural, electronic, optical and thermodynamic properties of two binaries: PbS and PbSe in rock-salt structures. In addition, several compositions with various ordered structures of PbS 1-x Se x alloys were studied. The calculations were performed using the full potential linearized augmented plane wave (FP-LAPW) method within the generalized gradient approximation (GGA). Various quantities, such as equilibrium lattice constants, bulk modulus, band structures and refractive index for all Se -concentrations are presented. The microscopic origins of the gap bowing were explained by using the approach of Zunger and coworkers. On the other hand, the thermodynamic stability of these alloys was investigated by calculating the excess enthalpy of mixing ΔHm as well as the phase diagram.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1404
Author(s):  
Yunfei Yang ◽  
Changhao Wang ◽  
Junhao Sun ◽  
Shilei Li ◽  
Wei Liu ◽  
...  

In this study, the structural, elastic, and thermodynamic properties of DO19 and L12 structured Co3X (X = W, Mo or both W and Mo) and μ structured Co7X6 were investigated using the density functional theory implemented in the pseudo-potential plane wave. The obtained lattice constants were observed to be in good agreement with the available experimental data. With respect to the calculated mechanical properties and Poisson’s ratio, the DO19-Co3X, L12-Co3X, and μ-Co7X6 compounds were noted to be mechanically stable and possessed an optimal ductile behavior; however, L12-Co3X exhibited higher strength and brittleness than DO19-Co3X. Moreover, the quasi-harmonic Debye–Grüneisen approach was confirmed to be valid in describing the temperature-dependent thermodynamic properties of the Co3X and Co7X6 compounds, including heat capacity, vibrational entropy, and Gibbs free energy. Based on the calculated Gibbs free energy of DO19-Co3X and L12-Co7X6, the phase transformation temperatures for DO19-Co3X to L12-Co7X6 were determined and obtained values were noted to match well with the experiment results.


2019 ◽  
Vol 33 (08) ◽  
pp. 1950093 ◽  
Author(s):  
A. Afaq ◽  
Abu Bakar ◽  
M. Rizwan ◽  
M. Aftab Fareed ◽  
H. Bushra Munir ◽  
...  

In this study, thermo-elastic and lattice dynamic properties of XMgAl (X = Li, Na) half-Heusler compounds are investigated using density functional theory implemented in WIEN2k and Quantum ESPRESSO codes. Generalized gradient approximation (GGA) as an exchange correlation function has been used in Kohn–Sham equations. Firstly, the structure of these Heusler compounds is optimized and then these optimized parameters are used to find three elastic constants [Formula: see text], [Formula: see text] and [Formula: see text] for [Formula: see text] type structures. Three elastic constants are then used to determine different elastic moduli like bulk modulus, shear modulus, Young’s modulus and other mechanical parameters like Pugh’s ratio, Poisson’s ratio, anisotropic ratio, sound velocities, Debye temperature and melting temperature. On behalf of these mechanical parameters, the brittle/ductile nature and isotropic/anisotropic behavior of the materials has been studied. Different regions of vibrational modes in the materials are also discussed on behalf of Debye temperature calculations. The vibrational properties of the half-Heusler compounds are computed using Martins–Troullier pseudo potentials implemented in Quantum ESPRESSO. The phonon dispersion curves and phonon density of states in first Brillion zone are obtained and discussed. Reststrahlen band of LiMgAl is found greater than NaMgAl.


2013 ◽  
Vol 27 (30) ◽  
pp. 1350224 ◽  
Author(s):  
N. ARIKAN ◽  
M. ERSEN ◽  
H. Y. OCAK ◽  
A. İYIGÖR ◽  
A. CANDAN ◽  
...  

In this paper, the structural, elastic and phonon properties of Ti 3 Al and Y 3 Al in L1 2( Cu 3 Al ) phase are studied by performing first-principles calculations within the generalized gradient approximation. The calculated lattice constants, static bulk moduli, first-order pressure derivative of bulk moduli and elastic constants for both compounds are reported. The phonon dispersion curves along several high-symmetry lines at the Brillouin zone, together with the corresponding phonon density of states, are determined using the first-principles linear-response approach of the density functional perturbation theory. Temperature variations of specific heat in the range of 0–500 K are obtained using the quasi-harmonic model.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Teshome Gerbaba Edossa ◽  
Menberu Mengasha Woldemariam

Abstract The dynamic and thermodynamic properties of wurtzite (wz) and zinc-blend (zb) CdS are investigated within the density functional theory using different approximation methods such as LDA, PBE, and DFT+U. Hellmann–Feynman approach is implemented for the relaxation of atomic position for both phases. To guarantee the accuracy of calculation, the convergence test of total energy with respect to energy cutoff and k-point sampling is performed. The dynamic properties such as phonon dispersion, phonon density of state, frequency along with high symmetry points, static and dynamic polarizability, and dielectric constants are calculated. The obtained values are compared with previous theoretical results. DFT + U approximation gives a good result that is consistent with the available theory. Moreover, the vibrational energy, vibrational free energy, entropy, electron chemical potential, and constant-volume specific heat are obtained within LDA, PBE, and DFT + U approximations.


2009 ◽  
Vol 1201 ◽  
Author(s):  
Markus Heinemann ◽  
Marcel Giar ◽  
Christian Heiliger

AbstractWe perform density functional theory calculations to determine equilibrium lattice parameters of wurtzite Zn1-xMgxO alloys for Mg concentrations x ranging from 0 to 31.25 %. We use the local density approximation (LDA) as well as the generalized gradient approximation (GGA) for the exchange correlation functional. For the lattice constants a and c we find a deviation from Vegard's law and a constant unit cell volume independent of the Mg concentration.


Sign in / Sign up

Export Citation Format

Share Document