Hybrid radial plate-type elastic metamaterials for lowering and widening acoustic bandgaps

2018 ◽  
Vol 32 (26) ◽  
pp. 1850286
Author(s):  
Yinggang Li ◽  
Qingwen Zhou ◽  
Ling Zhu ◽  
Kailing Guo

In this paper, we present theoretical investigation on the wave propagation and acoustic bandgap characteristics in hybrid radial plate-type elastic metamaterials constituted of periodic double-sides composite stubs deposited on one-dimensional binary radial phononic crystal plate. The dispersion relations and the displacement fields of the eigenmodes are calculated by using the finite element method on the basis of two-dimensional axial symmetry models. Numerical results show that the proposed hybrid radial plate-type elastic metamaterial can generate lowering and widening acoustic bandgaps and yield a significant expansion of the relative bandwidth by a factor of 5 compared to the traditional radial plate-type elastic metamaterial with double-sided composite stubs. The displacement fields of the eigenmodes are applied to reveal the formation mechanism of lowering and widening acoustic bandgaps. In addition, the influences of the physical and geometrical parameters on the bandgaps are further performed. These low-frequency broadband acoustic bandgap properties in the radial plate-type elastic metamaterials can probably be applied to vibration and noise reduction in the rotary machines and structures.

2016 ◽  
Vol 30 (07) ◽  
pp. 1650029 ◽  
Author(s):  
Ailing Song ◽  
Xiaopeng Wang ◽  
Tianning Chen ◽  
Ping Jiang ◽  
Kai Bao

In this paper, we theoretically investigate the propagation characteristics of Lamb wave in a two-dimensional (2D) asymmetric phononic crystal (PC) plate composed of cylinder stubs of different radius deposited on both sides of a thin homogeneous plate. The dispersion relations, transmission spectra and displacement fields of the eigenmodes are calculated by using the finite element method (FEM). Two complete bandgaps (BGs) can be found in low-frequency range and the transmission spectra coincide with the band structures. We investigate the evolution of dispersion relations with the decrease of the upper stub radius. The physical mechanism of the upper stub radius effect is also studied with the displacement fields of the unit cell. Numerical results show that the symmetry of the stub radius can remarkably influence the band structures and the asymmetric double-sided plate exhibits a new bandgap (BG) in lower frequency range due to the coupling between the lower stub’s resonant mode and the plate’s Lamb mode becomes weak and the adjacent bands separate. Moreover, we further investigate the effect of the stub height on the dispersion relations and find that the BGs shift to lower frequency regions with the increase of the stub height. In addition, the BGs’ sensitivity to the upper stub radius and the stub height is discussed. The low-frequency BGs in the proposed PC plate can potentially be used to control and insulate vibration in low frequency range.


Author(s):  
Chittaranjan Nayak ◽  
Mehdi Solaimani ◽  
Alireza Aghajamali ◽  
Arafa H. Aly

In this study, we have scrutinized the frequency gap generation by changing the geometrical parameters of a one-dimensional phononic crystal. For this purpose, we have calculated the transmission coefficient of an incident acoustic wave by using the transfer matrix method. We have retained and fixed the total length of the system and changed the system internal geometry not to increase the system length too much. Another reason was to adjust the phononic band gaps and get the desired transmission properties by finding the optimum internal geometry without increasing or decreasing the total length of phononic crystals. In addition, we also propose few structures with the opportunity of applications in acoustical devices such as sonic reflectors. Our results can also be of high interest to design acoustic filters in the case that transmission of certain frequencies is necessary.


2014 ◽  
Vol 22 (04) ◽  
pp. 1450010 ◽  
Author(s):  
Xu Yang Xiao ◽  
Run Ping Chen

The propagation of elastic longitudinal waves in one-dimensional (1D) phononic crystals (PNCs) consisting of alternating solid and fluid media is comprehensively analyzed in theory. We demonstrate the acoustic band gap (ABG) structure determined by the dispersion relation for longitudinal waves at normal incidence. According to the band structure, we design a sub-PNC by setting a reasonable thickness ratio of fluid and solid media, and then form a phononic heterostructure by merging this PNC and other PNC designed in advance. We have shown that the wide band gap exists in such a phononic heterostructure for elastic longitudinal waves at normal incidence. For oblique incidence, the wide band gap shifts towards high frequency regions, meanwhile a low-frequency band gap is split.


2018 ◽  
Vol 32 (15) ◽  
pp. 1850165 ◽  
Author(s):  
Yake Dong ◽  
Hong Yao ◽  
Jun Du ◽  
Jingbo Zhao ◽  
Ding Chao ◽  
...  

A hybrid phononic crystal has been investigated. The characteristic frequency of XY mode, transmission loss and displacement vector have been calculated by the finite element method. There are Bragg scattering band gap and local resonance band gap in the band structures. We studied the influence factors of band gap. There are many flat bands in the eigenfrequencies curve. There are many flat bands in the curve. The band gap covers a large range in low frequency. The band gaps cover more than 95% below 3000 Hz.


2021 ◽  
Vol 12 (1) ◽  
pp. 167
Author(s):  
Hongbo Zhang ◽  
Shaobo Zhang ◽  
Jiang Liu ◽  
Bilong Liu

Weyl physics in acoustic and elastic systems has drawn extensive attention. In this paper, Weyl points of shear horizontal guided waves are realized by one-dimensional phononic crystal plates, in which one physical dimension plus two geometrical parameters constitute a synthetic three-dimensional space. Based on the finite element method, we have not only observed the synthetic Weyl points but also explored the Weyl interface states and the reflection phase vortices, which have further proved the topological phase interface states. As the first realization of three-dimensional topological phases through one-dimensional phononic crystal plates in the synthetic dimension, this research demonstrates the great potential of applicable one-dimensional plate structural systems in detecting higher-dimensional topological phenomena.


Author(s):  
Fan Yang ◽  
Bin Deng

At present, double expansion chamber structures are widely used in the field of acoustic attenuation, and two kinds of double-chamber compound structures for hydraulic attenuators are proposed in this paper. A one-dimensional analytical approach was developed to predict the pressure pulsation attenuation performance of these two structures, and comparisons of insertion loss predictions with experimental results illustrated that the one-dimensional approach is suitable for accurate prediction among the research frequency band. This approach was then used to investigate the effects of porosity and geometrical parameters on the pressure pulsation performance of these two double-chamber compound hydraulic attenuators. To optimize the pressure pulsation attenuation performance at the backwash frequency, parameter optimization was performed for these double-chamber compound structures, and a genetic algorithm based on double-precision floating-point encoding was proposed. The results showed that the range of attenuation frequency bands was widened; however, the effect on low frequency filtering characteristics was limited. The insertion loss of the second structure, which had a partially perforated tube, exhibits a superposition of dome attenuation and axial resonance in the plane wave region. By choosing the length and location of the perforated section to match resonances with the troughs of the pulsation attenuator, a desirable broadband pressure pulsation attenuation can be obtained.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1379
Author(s):  
Dong-Hai Han ◽  
Jing-Bo Zhao ◽  
Guang-Jun Zhang ◽  
Hong Yao

In order to solve the problem of low-frequency noise of aircraft cabins, this paper presents a new Helmholtz type phononic crystal with a two-dimensional symmetric structure. Under the condition of the lattice constant of 62 mm, the lower limit of the first band gap is about 12 Hz, and the width is more than 10 Hz, thus the symmetric structure has distinct sound insulation ability in the low-frequency range. Firstly, the cause of the low-frequency band gap is analyzed by using the sound pressure field, and the range of band gaps is calculated by using the finite element method and the spring-oscillator model. Although the research shows that the finite element calculation results are basically consistent with the theoretical calculation, there are still some errors, and the reasons for the errors are analyzed. Secondly, the finite element method and equivalent model method are used to explore the influence of parameters of the symmetric structure on the first band gap. The result shows that the upper limit of the first band gap decreases with the increase of the lattice constant and the wedge height and increases with the increase of the length of wedge base; the lower limit of the band gap decreases with the increase of the wedge height and length of wedge base and is independent of the change of lattice constant, which further reveals the essence of the band gap formation and verifies the accuracy of the equivalent model. This study provides some theoretical support for low-frequency noise control and broadens the design idea of symmetric phononic crystal.


2011 ◽  
Vol 287-290 ◽  
pp. 650-653
Author(s):  
Zhuo Fei Song ◽  
Qiang Song Wang ◽  
Zi Dong Wang

Comprehensive study is performed for the one-dimensional phononic crystals with locally resonant structures mechanism and Bragg scattering mechanism. Found locally resonant mechanism is same as Bragg scattering mechanism on one-dimension phononic crystal. The reasons of producing lower frequency band gap are still stiffness decrease and quality increase. So the theory that locally resonant structure is better than Bragg scattering in low frequency vibration reduction is inexact.


2016 ◽  
Vol 30 (27) ◽  
pp. 1650203 ◽  
Author(s):  
X. P. Wang ◽  
P. Jiang ◽  
A. L. Song

In this paper, the low-frequency and tuning characteristic of band gap in a two-dimensional phononic crystal structure, consisting of a square array of aluminum cylindrical stubs deposited on both sides of a thin rubber plate with slit structure, are investigated. Using the finite element method, the dispersion relationships and power transmission spectra of this structure are calculated. In contrast to a typical phononic crystal without slit structure, the proposed slit structure shows band gaps at lower frequencies. The vibration modes of the band gap edges are analyzed to clarify the mechanism of the lowest band gaps. Additionally, the influence of the slit parameters and stub parameters on the band gaps in slit structure are investigated. The geometrical parameters of the slits and stubs were found to influence the band gaps; this is critical to understand for practical applications. These results will help in fabricating phononic crystal structures whose band frequency can be modulated at lower frequencies.


Sign in / Sign up

Export Citation Format

Share Document