A novel numerical approach for the calculation of refractive index of Wurtzite InxGa1−xN

2018 ◽  
Vol 32 (28) ◽  
pp. 1850315 ◽  
Author(s):  
Dhanu Chettri ◽  
Khomdram Jolson Singh ◽  
Manish Mathew ◽  
Nikhil Deep Gupta

Accurate values of refractive indices for In[Formula: see text]Ga[Formula: see text]N alloy as a function of indium mole fraction play a vital role in the modeling of In[Formula: see text]Ga[Formula: see text]N-based optoelectronics devices. This work extensively investigated, analyzed and derived a conclusive numerical approach to calculate the refractive index of In[Formula: see text]Ga[Formula: see text]N over a wide wavelength as a function of indium mole fraction based on Vegard’s law. The model is based on the fact that there is a strong correlation between the mole fraction (x) and the refractive index of ternary alloys A[Formula: see text]B[Formula: see text]C. An excellent agreement is observed between the computed values and experimental data which proves the effectiveness of our numerical approach.

A method is suggested by which the refractive index and Verdet constant of an atomic system may be derived theoretically. It is applied to atomic hydrogen and to the inert gases and a comparison is made with experimental data. The Verdet constant of neon is not anomalous. The origin of the suggestion appears to be an underestimate of the experimental error. The analysis yields values of th e polarizabilities of th e inert gases which are respectively He, 1-384; Ne, 2-663; Ar, 11-080; K r, 16-734; X e, 27-292 in units of α 3 0


2014 ◽  
Vol 20 (3) ◽  
pp. 441-455 ◽  
Author(s):  
Emila Zivkovic ◽  
Mirjana Kijevcanin ◽  
Ivona Radovic ◽  
Slobodan Serbanovic

Viscosities and refractive indices of three binary systems, acetone+1-propanol, acetone+1,2-propanediol and acetone+1,3-propanediol, were measured at eight temperatures (288.15, 293.15, 298.15, 303.15, 308.15, 313.15, 318.15, 323.15)K and at atmospheric pressure. From these data viscosity deviations and deviations in refractive index were calculated and fitted to the Redlich-Kister equation. The viscosity modelling was done by two types of models: predictive UNIFAC-VISCO and ASOG VISCO and correlative Teja-Rice and McAlister equations. The refractive indices of binary mixtures were predicted by various mixing rules and compared with experimental data.


1974 ◽  
Vol 52 (16) ◽  
pp. 1571-1582 ◽  
Author(s):  
F. Robillard ◽  
A. J. Patitsas

Mie scattering at two different wavelengths was used to determine the size, the size distribution, and the refractive index of Dow latexes EP-1358-38. Computer calculated scattering curves were obtained for three size dispersions and three refractive indices. The experimental scattering curves were compared with the calculated curves in order to find the combination of refractive index and size distribution for which the agreement between the experimental data and the computed values was optimized.


Author(s):  
Walter C. McCrone

An excellent chapter on this subject by V.D. Fréchette appeared in a book edited by L.L. Hench and R.W. Gould in 1971 (1). That chapter with the references cited there provides a very complete coverage of the subject. I will add a more complete coverage of an important polarized light microscope (PLM) technique developed more recently (2). Dispersion staining is based on refractive index and its variation with wavelength (dispersion of index). A particle of, say almandite, a garnet, has refractive indices of nF = 1.789 nm, nD = 1.780 nm and nC = 1.775 nm. A Cargille refractive index liquid having nD = 1.780 nm will have nF = 1.810 and nC = 1.768 nm. Almandite grains will disappear in that liquid when observed with a beam of 589 nm light (D-line), but it will have a lower refractive index than that liquid with 486 nm light (F-line), and a higher index than that liquid with 656 nm light (C-line).


1979 ◽  
Vol 44 (7) ◽  
pp. 2064-2078 ◽  
Author(s):  
Blahoslav Sedláček ◽  
Břetislav Verner ◽  
Miroslav Bárta ◽  
Karel Zimmermann

Basic scattering functions were used in a novel calculation of the turbidity ratios for particles having the relative refractive index m = 1.001, 1.005 (0.005) 1.315 and the size α = 0.05 (0.05) 6.00 (0.10) 15.00 (0.50) 70.00 (1.00) 100, where α = πL/λ, L is the diameter of the spherical particle, λ = Λ/μ1 is the wavelength of light in a medium with the refractive index μ1 and Λ is the wavelength of light in vacuo. The data are tabulated for the wavelength λ = 546.1/μw = 409.357 nm, where μw is the refractive index of water. A procedure has been suggested how to extend the applicability of Tables to various refractive indices of the medium and to various turbidity ratios τa/τb obtained with the individual pairs of wavelengths λa and λb. The selection of these pairs is bound to the sequence condition λa = λ0χa and λb = λ0χb, in which b-a = δ = 1, 2, 3; a = -2, -1, 0, 1, 2, ..., b = a + δ = -1, 0, 1, 2, ...; λ0 = λa=0 = 326.675 nm; χ = 546.1 : 435.8 = 1.2531 is the quotient of the given sequence.


1983 ◽  
Vol 105 (1) ◽  
pp. 29-33 ◽  
Author(s):  
A. M. Clausing

Cavity solar receivers are generally believed to have higher thermal efficiencies than external receivers due to reduced losses. A simple analytical model was presented by the author which indicated that the ability to heat the air inside the cavity often controls the convective loss from cavity receivers. Thus, if the receiver contains a large amount of inactive hot wall area, it can experience a large convective loss. Excellent experimental data from a variety of cavity configurations and orientations have recently become available. These data provided a means of testing and refining the analytical model. In this manuscript, a brief description of the refined model is presented. Emphasis is placed on using available experimental evidence to substantiate the hypothesized mechanisms and assumptions. Detailed comparisons are given between analytical predictions and experimental results. Excellent agreement is obtained, and the important mechanisms are more clearly delineated.


2013 ◽  
Vol 321-324 ◽  
pp. 495-498 ◽  
Author(s):  
Dong Chen ◽  
Chao Xu

The reflectivity, loss function, refractive index, extinction coefficient and dielectric function of the LaNi5and LaNi4.5Sn0.5intermetallic compounds are investigated through the plane-wave pseudo-potential method based on the density functional theory. The effects of Sn impurity are discussed and some interesting features are found in the low frequency region. Some important optical properties such as static dielectric constant and static refractive index are obtained. The equation [n (0)]2=ε1(0)is satisfied according to our calculation, which indicates that our results are correct and reasonable. Nevertheless, the calculated results need to be testified in the future due to the lack of experimental data.


SPE Journal ◽  
2013 ◽  
Vol 18 (03) ◽  
pp. 440-447 ◽  
Author(s):  
C.C.. C. Ezeuko ◽  
J.. Wang ◽  
I.D.. D. Gates

Summary We present a numerical simulation approach that allows incorporation of emulsion modeling into steam-assisted gravity-drainage (SAGD) simulations with commercial reservoir simulators by means of a two-stage pseudochemical reaction. Numerical simulation results show excellent agreement with experimental data for low-pressure SAGD, accounting for approximately 24% deficiency in simulated oil recovery, compared with experimental data. Incorporating viscosity alteration, multiphase effect, and enthalpy of emulsification appears sufficient for effective representation of in-situ emulsion physics during SAGD in very-high-permeability systems. We observed that multiphase effects appear to dominate the viscosity effect of emulsion flow under SAGD conditions of heavy-oil (bitumen) recovery. Results also show that in-situ emulsification may play a vital role within the reservoir during SAGD, increasing bitumen mobility and thereby decreasing cumulative steam/oil ratio (cSOR). Results from this work extend understanding of SAGD by examining its performance in the presence of in-situ emulsification and associated flow of emulsion with bitumen in porous media.


2020 ◽  
Vol 22 (2) ◽  
pp. 111-114
Author(s):  
D.T. Bozorova ◽  
Sh.P. Gofurov ◽  
A.M. Kokhkharov ◽  
O.B. Ismailova

In this work, the refractometry method was used to study of the molecular interactions and structural characteristics of dimethylformamide-ethanol and cyclohexane-ethanol binary mixtures. The refractive indices of mixtures were measured over a wide range of dimethylformamide and cyclohexane concentrations (0−1.0 mole fractions) at 25°С. It has been shown that heteromolecular complexes in binary solutions are formed at the concentration of ∼0.5 mole fraction of those compounds due to strong H-bonds. Relatively weak interactions are determined at a concentration of ∼0.2 and ∼0.9 mole fraction of dimethylformamide and ∼0.2 and ∼0.8 mole fraction of cyclohexane.


2021 ◽  
Vol 42 ◽  
pp. 128-134
Author(s):  
Daniela Pintilie ◽  
Iuliana Florina Pană ◽  
Adrian Malciu ◽  
Constantin Puică ◽  
Cristina Pupăză

High Explosive Mortar bombs are used on the battlefield for destroying the manpower, non-armoured equipment and shelters. The paper describes an original experimental and numerical approach regarding the potential threats caused by the detonation of 120 mm HE mortar bombs. The evaluation of the bomb effect presumes the fulfillment of experimental trials that focus on two physical mechanisms which appear after the detonation of the cased high explosive. These mechanisms are the shock wave generation and the fragments propulsion, which were also studied by a numerical model that provides results over the bomb fragmentation mode. The novelty of the paper consists in the calibrated 3D numerical model confirmed by the experimental data, which provides information over the fragmentation process of the case and the initial velocity of its fragments, proving that the main threat of this type of ammunition is the effect through metal fragments. The results of numerical simulation and experimental data are used for their comparative analysis and the assessment of the phenomena.


Sign in / Sign up

Export Citation Format

Share Document