The refractive indices and Verdet constants of the inert gases

A method is suggested by which the refractive index and Verdet constant of an atomic system may be derived theoretically. It is applied to atomic hydrogen and to the inert gases and a comparison is made with experimental data. The Verdet constant of neon is not anomalous. The origin of the suggestion appears to be an underestimate of the experimental error. The analysis yields values of th e polarizabilities of th e inert gases which are respectively He, 1-384; Ne, 2-663; Ar, 11-080; K r, 16-734; X e, 27-292 in units of α 3 0

2014 ◽  
Vol 20 (3) ◽  
pp. 441-455 ◽  
Author(s):  
Emila Zivkovic ◽  
Mirjana Kijevcanin ◽  
Ivona Radovic ◽  
Slobodan Serbanovic

Viscosities and refractive indices of three binary systems, acetone+1-propanol, acetone+1,2-propanediol and acetone+1,3-propanediol, were measured at eight temperatures (288.15, 293.15, 298.15, 303.15, 308.15, 313.15, 318.15, 323.15)K and at atmospheric pressure. From these data viscosity deviations and deviations in refractive index were calculated and fitted to the Redlich-Kister equation. The viscosity modelling was done by two types of models: predictive UNIFAC-VISCO and ASOG VISCO and correlative Teja-Rice and McAlister equations. The refractive indices of binary mixtures were predicted by various mixing rules and compared with experimental data.


2018 ◽  
Vol 32 (28) ◽  
pp. 1850315 ◽  
Author(s):  
Dhanu Chettri ◽  
Khomdram Jolson Singh ◽  
Manish Mathew ◽  
Nikhil Deep Gupta

Accurate values of refractive indices for In[Formula: see text]Ga[Formula: see text]N alloy as a function of indium mole fraction play a vital role in the modeling of In[Formula: see text]Ga[Formula: see text]N-based optoelectronics devices. This work extensively investigated, analyzed and derived a conclusive numerical approach to calculate the refractive index of In[Formula: see text]Ga[Formula: see text]N over a wide wavelength as a function of indium mole fraction based on Vegard’s law. The model is based on the fact that there is a strong correlation between the mole fraction (x) and the refractive index of ternary alloys A[Formula: see text]B[Formula: see text]C. An excellent agreement is observed between the computed values and experimental data which proves the effectiveness of our numerical approach.


2007 ◽  
Vol 364-366 ◽  
pp. 510-515
Author(s):  
Yen Liang Yeh ◽  
Cheng Chi Wang ◽  
Ming Jyi Jang ◽  
Yen Pin Lin ◽  
Kuang Sheng Chen

This paper presents a high-precision, non-destructive measurement system for determining the thickness and refractive indices of birefringent optical wave plates. Significantly, the proposed method enables the two refractive indices of the optical sample to be measured simultaneously. The performance of the proposed system is verified using a commercial quartz optical wave plate with known refractive indices of 1.5518 e n = and 1.5427 o n = , respectively, and a thickness of 452.1428 μm. The experimentally determined values of the refractive indices are found to be 1.55190 e n = and 1.54281 o n = , respectively, while the thickness is found to be 452.189 μm, corresponding to an experimental error of approximately 0.046 μm. The measurement resolution of the proposed system exceeds that of the interferometer hardware itself and provides a simple yet highly accurate means of measuring the principal optical parameters of birefringent glass wave plates.


1974 ◽  
Vol 52 (16) ◽  
pp. 1571-1582 ◽  
Author(s):  
F. Robillard ◽  
A. J. Patitsas

Mie scattering at two different wavelengths was used to determine the size, the size distribution, and the refractive index of Dow latexes EP-1358-38. Computer calculated scattering curves were obtained for three size dispersions and three refractive indices. The experimental scattering curves were compared with the calculated curves in order to find the combination of refractive index and size distribution for which the agreement between the experimental data and the computed values was optimized.


Author(s):  
Walter C. McCrone

An excellent chapter on this subject by V.D. Fréchette appeared in a book edited by L.L. Hench and R.W. Gould in 1971 (1). That chapter with the references cited there provides a very complete coverage of the subject. I will add a more complete coverage of an important polarized light microscope (PLM) technique developed more recently (2). Dispersion staining is based on refractive index and its variation with wavelength (dispersion of index). A particle of, say almandite, a garnet, has refractive indices of nF = 1.789 nm, nD = 1.780 nm and nC = 1.775 nm. A Cargille refractive index liquid having nD = 1.780 nm will have nF = 1.810 and nC = 1.768 nm. Almandite grains will disappear in that liquid when observed with a beam of 589 nm light (D-line), but it will have a lower refractive index than that liquid with 486 nm light (F-line), and a higher index than that liquid with 656 nm light (C-line).


1979 ◽  
Vol 44 (7) ◽  
pp. 2064-2078 ◽  
Author(s):  
Blahoslav Sedláček ◽  
Břetislav Verner ◽  
Miroslav Bárta ◽  
Karel Zimmermann

Basic scattering functions were used in a novel calculation of the turbidity ratios for particles having the relative refractive index m = 1.001, 1.005 (0.005) 1.315 and the size α = 0.05 (0.05) 6.00 (0.10) 15.00 (0.50) 70.00 (1.00) 100, where α = πL/λ, L is the diameter of the spherical particle, λ = Λ/μ1 is the wavelength of light in a medium with the refractive index μ1 and Λ is the wavelength of light in vacuo. The data are tabulated for the wavelength λ = 546.1/μw = 409.357 nm, where μw is the refractive index of water. A procedure has been suggested how to extend the applicability of Tables to various refractive indices of the medium and to various turbidity ratios τa/τb obtained with the individual pairs of wavelengths λa and λb. The selection of these pairs is bound to the sequence condition λa = λ0χa and λb = λ0χb, in which b-a = δ = 1, 2, 3; a = -2, -1, 0, 1, 2, ..., b = a + δ = -1, 0, 1, 2, ...; λ0 = λa=0 = 326.675 nm; χ = 546.1 : 435.8 = 1.2531 is the quotient of the given sequence.


2013 ◽  
Vol 321-324 ◽  
pp. 495-498 ◽  
Author(s):  
Dong Chen ◽  
Chao Xu

The reflectivity, loss function, refractive index, extinction coefficient and dielectric function of the LaNi5and LaNi4.5Sn0.5intermetallic compounds are investigated through the plane-wave pseudo-potential method based on the density functional theory. The effects of Sn impurity are discussed and some interesting features are found in the low frequency region. Some important optical properties such as static dielectric constant and static refractive index are obtained. The equation [n (0)]2=ε1(0)is satisfied according to our calculation, which indicates that our results are correct and reasonable. Nevertheless, the calculated results need to be testified in the future due to the lack of experimental data.


2021 ◽  
Vol 1022 ◽  
pp. 194-202
Author(s):  
R.Kh. Dadashev ◽  
R.A. Kutuev

The experimental study results of the melts concentration dependence of the surface tension of the four-component indium-tin-lead-bismuth system and its constituent binary systems of indium-tin, indium-lead, indium-bismuth, tin-lead, tin-bismuth, lead-bismuth are presented in the paper. It is shown that the concentration dependence of the melts surface tension of the In-Sn-Pb-Bi four-component system can be predicted from the data on ST (surface tension) values of lateral binary systems. Features in the ST isotherms in the form of a minimum are observed only in the indium-tin lateral system from all lateral binaries. A distinctive feature of the detected minimum is that the minimum depth slightly exceeds the experimental error. Therefore, in addition to the fact that the area of average compositions was studied more thoroughly, we carried out the surface tension measurements by two independent methods. The experimental data obtained by both methods coincide within the experimental error and indicate the extremum availability on ST isotherms. Thus, ST experimental studies by two independent methods confirmed the presence of a flat minimum on ST isotherms of the indium-tin binary system increasing the reliability of the obtained data. The obtained outcomes and their comparison with experimental data have shown that the considered models for predicting surface properties based on data due to similar properties of lateral binary systems adequately reflect the experimental dependences. However, the prediction model based on Kohler's method of excess values describes the experimental curves more accurately.


2018 ◽  
Vol 879 ◽  
pp. 227-233
Author(s):  
Weeratouch Pongruengkiat ◽  
Thitika Jungpanich ◽  
Kodchakorn Ittipornnuson ◽  
Suejit Pechprasarn ◽  
Naphat Albutt

Refractive index and Abbe number are major physical properties of optical materials including glasses and transparent polymers. Refractive index is, in fact, not a constant number and is varied as a function of optical wavelength. The full refractive index spectrum can be obtained using a spectrometer. However, for optical component designers, three refractive indices at the wavelengths of 486.1 nm, 589.3 nm and 656.3 nm are usually sufficient for most of the design tasks, since the rest of the spectrum can be predicted by mathematical models and interpolation. In this paper, we propose a simple optical instrumental setup that determines the refractive indices at three wavelengths and the Abbe number of solid and liquid materials.


2018 ◽  
Vol 64 (1) ◽  
pp. 72 ◽  
Author(s):  
D. Estrada-Wiese ◽  
J.A. Del Río

There are two main physical properties needed to fabricate 1D photonic structures and form perfect photonic bandgaps: the quality of thethickness periodicity and the refractive index of their components. Porous silicon (PS) is a nano-structured material widely used to prepare 1Dphotonic crystals due to the ease of tuning its porosity and its refractive index by changing the fabrication conditions. Since the morphologyof PS changes with porosity, the determination of PS’s refractive index is no easy task. To find the optical properties of PS we can usedifferent effective medium approximations (EMA). In this work we propose a method to evaluate the performance of the refractive index ofPS layers to build photonic Bragg reflectors. Through a quality factor we measure the agreement between theory and experiment and thereinpropose a simple procedure to determine the usability of the refractive indices. We test the obtained refractive indices in more complicatedstructures, such as a broadband Vis-NIR mirror, and by means of a Merit function we find a good agreement between theory and experiment.With this study we have proposed quantitative parameters to evaluate the refractive index for PS Bragg reflectors. This procedure could havean impact on the design and fabrication of 1D photonic structures for different applications.


Sign in / Sign up

Export Citation Format

Share Document