SHEAR VISCOSITY OF STRONGLY-COUPLED TWO-DIMENSIONAL YUKAWA LIQUIDS: EXPERIMENT AND MODELING

2007 ◽  
Vol 21 (21) ◽  
pp. 1357-1376 ◽  
Author(s):  
Z. DONKÓ ◽  
P. HARTMANN ◽  
J. GOREE

This paper reviews experimental and modeling efforts aimed at the determination of the shear viscosity of strongly-coupled Yukawa liquids. After briefly reviewing prior work on three-dimensional (3D) systems, recent experimental and computer simulation studies of two-dimensional (2D) settings are presented in detail. In the experiments two counterpropagating laser beams were used to perturb a dusty plasma monolayer and monitoring of the velocity field reconstructed from particle trajectories allowed the determination of the shear viscosity with the aid of an analytical model. Subsequent computer simulations based on the molecular dynamics approach resulted in velocity profiles which are in very good agreement with the experimental ones. Further simulation studies of idealized 2D Yukawa liquids (in which gas friction is neglected) gave results for the shear viscosity over a wide range of system parameters and demonstrated the existence of the shear thinning effect (non-Newtonian behavior) of the liquid at high shear rates.

2017 ◽  
Vol 830 ◽  
pp. 93-137 ◽  
Author(s):  
S. Hormozi ◽  
I. A. Frigaard

Solids dispersion is an important part of hydraulic fracturing, both in helping to understand phenomena such as tip screen-out and spreading of the pad, and in new process variations such as cyclic pumping of proppant. Whereas many frac fluids have low viscosity, e.g. slickwater, others transport proppant through increased viscosity. In this context, one method for influencing both dispersion and solids-carrying capacity is to use a yield stress fluid as the frac fluid. We propose a model framework for this scenario and analyse one of the simplifications. A key effect of including a yield stress is to focus high shear rates near the fracture walls. In typical fracturing flows this results in a large variation in shear rates across the fracture. In using shear-thinning viscous frac fluids, flows may vary significantly on the particle scale, from Stokesian behaviour to inertial behaviour across the width of the fracture. Equally, according to the flow rates, Hele-Shaw style models give way at higher Reynolds number to those in which inertia must be considered. We develop a model framework able to include this range of flows, while still representing a significant simplification over fully three-dimensional computations. In relatively straight fractures and for fluids of moderate rheology, this simplifies into a one-dimensional model that predicts the solids concentration along a streamline within the fracture. We use this model to make estimates of the streamwise dispersion in various relevant scenarios. This model framework also predicts the transverse distributions of the solid volume fraction and velocity profiles as well as their evolutions along the flow part.


Author(s):  
Jeffrey S. Oishi ◽  
Geoffrey M. Vasil ◽  
Morgan Baxter ◽  
Andrew Swan ◽  
Keaton J. Burns ◽  
...  

The magnetorotational instability (MRI) occurs when a weak magnetic field destabilizes a rotating, electrically conducting fluid with inwardly increasing angular velocity. The MRI is essential to astrophysical disc theory where the shear is typically Keplerian. Internal shear layers in stars may also be MRI-unstable, and they take a wide range of profiles, including near-critical. We show that the fastest growing modes of an ideal magnetofluid are three-dimensional provided the shear rate, S , is near the two-dimensional onset value, S c . For a Keplerian shear, three-dimensional modes are unstable above S  ≈ 0.10 S c , and dominate the two-dimensional modes until S  ≈ 2.05 S c . These three-dimensional modes dominate for shear profiles relevant to stars and at magnetic Prandtl numbers relevant to liquid-metal laboratory experiments. Significant numbers of rapidly growing three-dimensional modes remainy well past 2.05 S c . These finding are significant in three ways. First, weakly nonlinear theory suggests that the MRI saturates by pushing the shear rate to its critical value. This can happen for systems, such as stars and laboratory experiments, that can rearrange their angular velocity profiles. Second, the non-normal character and large transient growth of MRI modes should be important whenever three-dimensionality exists. Finally, three-dimensional growth suggests direct dynamo action driven from the linear instability.


2001 ◽  
Vol 24 (2) ◽  
pp. 224-225
Author(s):  
Katherine A. Leighty ◽  
Sarah E. Cummins-Sebree ◽  
Dorothy M. Fragaszy

The arguments of Stoffregen & Bardy for studying perception based on the global array are intriguing. This theory can be examined in nonhuman species using nonverbal tasks. We examine how monkeys master a skill that incorporates a two-dimensional/three-dimensional interface. We feel this provides excellent support for Stoffregen & Bardy's theory.


Author(s):  
Parisa Sarmadi ◽  
Sarah Hormozi ◽  
Ian A. Frigaard

Abstract Recently we have introduced a novel methodology for efficient transport of heavy oil via a triple-layer core-annular flow [1]. Pumping pressures are significantly reduced by concentrating high shear rates to a lubricating layer, while ideas from visco-plastic lubrication were used to eliminate interfacial instabilities. We purposefully position a shaped unyielded skin of a visco-plastic fluid between the transported oil and the lubricating fluid layer. The shaping of the skin layer allows for lubrication forces to develop and balance the density difference between the fluids. Here we show an explicit advantage of the proposed method. Essentially the method can give stable flows for a very wide range of fluid input ratio, although not all will produce the desired reduction in frictional pressure losses. Additionally, we use the extensional flow method derived in [2] to estimate the required yield stress to maintain the skin completely unyielded.


2011 ◽  
Vol 57 (205) ◽  
pp. 811-816 ◽  
Author(s):  
Emilie Zermatten ◽  
Sophia Haussener ◽  
Martin Schneebeli ◽  
Aldo Steinfeld

AbstractA tomography-based methodology for the mass transport characterization of snow is presented. Five samples, characteristic for a wide range of seasonal snow, are considered. Their three-dimensional (3-D) geometrical representations are obtained by micro-computed tomography and used in direct pore-level simulations to numerically solve the governing mass and momentum conservation equations, allowing for the determination of their effective permeability and Dupuit–Forchheimer coefficient. The extension to the Dupuit–coefficient is useful near the snow surface, where Reynolds numbers higher than unity can appear. Simplified semi-empirical models of porous media are also examined. The methodology presented allows for the determination of snow’s effective mass transport properties, which are strongly dependent on the snow microstructure and morphology. These effective properties can, in turn, readily be used in snowpack volume-averaged (continuum) models such as strongly layered samples with macroscopically anisotropic properties.


1980 ◽  
Vol 15 (1) ◽  
pp. 37-41 ◽  
Author(s):  
P S Theocaris ◽  
N I Ioakimidis

The optical method of caustics constitutes an efficient experimental technique for the determination of quantities of interest in elasticity problems. Up to now, this method has been applied only to two-dimensional elasticity problems (including plate and shell problems). In this paper, the method of caustics is extended to the case of three-dimensional elasticity problems. The particular problems of a concentrated force and a uniformly distributed loading acting normally on a half-space (on a circular region) are treated in detail. Experimentally obtained caustics for the first of these problems were seen to be in satisfactory agreement with the corresponding theoretical forms. The treatment of various, more complicated, three-dimensional elasticity problems, including contact problems, by the method of caustics is also possible.


Author(s):  
G. J. Scholten

Where sealed, grease-lubricated sleeve and ball-bearings are used with once-only lubrication for life, the rheological properties of the grease as a function of the service life are important in connection with the load-carrying capacity and the sealing capacity. To calculate the bearing capacity of a journal or spiral-groove bearing it is important to know the relation between the rate of shear and the shear stress in the lubricating film, i.e. the apparent viscosity, as a function of time. For sealing of the bearing the value of the yield strength of the grease, after shearing, is also important as a function of time. To measure these two magnitudes, a rotating-cylinder type of viscometer and a cylinder type of yield strength meter have been constructed. The viscometer permits the determination of viscosity up to shear rates of about 5 × 105 s-1, while the yield strength meter can ascertain the ultimate strength, after stressing, with shear rates of up to 105 s-1—both being determined within the temperature range 25–125°C. A number of commercially available greases have been tested.


2008 ◽  
Vol 589 ◽  
pp. 31-35
Author(s):  
Gábor Lengyel ◽  
Béla Palotás

The mechanical properties of temper-grade steels can be modified in a wide range by heat treatment. The principle of heat treatment lies in the good hardenability, so when such steels are welded it is very likely that the heat affected zone is hardened. Considering the fact that in the case of design simplifications it may be needed to weld temper-grade steels, as well therefore it is of crucial importance to eliminate cold cracking. There are many methods available to determine preheat temperature. The applicability of methods for determination of preheat temperature was checked by experimental welding for both two and three dimensional heat conduction. According to our experience the different methods cannot be applied in general namely they are valid only under certain conditions.


Sign in / Sign up

Export Citation Format

Share Document