PREPARATION AND PHOTOLUMINESCENCE PROPERTIES OFNdVO4NANOTUBES IN AAO TEMPLATE

2009 ◽  
Vol 23 (22) ◽  
pp. 2647-2653 ◽  
Author(s):  
XIAO-NIU PENG ◽  
XIAN ZHANG ◽  
LIAO YU ◽  
LI ZHOU

Porous anodized aluminum oxide (AAO) template was combined with sol-gel method in this work for the fabrication of high-ordered NdVO4nanotube arrays. The diameter, length, and wall thickness of the nanotubes can be adjusted conveniently. The sample was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), absorption spectra, and photoluminescence spectra. The results show that these uniformly distributed, high-ordered, and parallel nanotubes have great light emission in both the visible region and near-infrared region due to their corresponding energy level transitions. With this method, future application of rare-earth hollow nanostructures will be widely extended.

2010 ◽  
Vol 663-665 ◽  
pp. 965-968
Author(s):  
Yue Hui Wang ◽  
Dong Jun Wang ◽  
Ai Jun Song ◽  
Zhi Gang Zhang ◽  
Shi Tao Song

TiO2/Ga2O3 nanowires were successfully prepared by a sol–gel-solvothermal method using tetrabutyl titanate as precursor, alcohol as solvent, Ga2O3 as templet and dopants, alginate as dispersant. The structures, morphologies,compositions and catalytic activity of products have been characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy ( FESEM ), nitrogen adsorption test, ultraviolet-visible near-infrared spectroscopy (UV–vis–NIR ),energy dispersive X-ray (EDX) analysis and spectrophotometer. The results revealed that the as-synthesized TiO2/Ga2O3 nanowires grew along [001] direction,which is reported for the first time, and the as-prepared product had better optical activity than TiO2 nanoparticles. Finally, the nanowires have a good adsorption capacity of 128.2 m2/g tested through nitrogen adsorption.


2011 ◽  
Vol 694 ◽  
pp. 370-374 ◽  
Author(s):  
Dong Bo Yu ◽  
Yi Feng ◽  
Yan Fang Zhu ◽  
Xue Bin Zhang ◽  
Bin Li ◽  
...  

Tungsten disulfide nanotubes were fabricated by means of decomposition of ammonium tetrathiotungstate ((NH4)2WS4) on anodized aluminum oxide (AAO) template. The morphology and structures of WS2 nanotubes were characterized by transmission electron microscopy (TEM), electron diffraction. The nanopores in template, the incorporation method and soakage time have function on the structure of WS2 nanotubes.


2016 ◽  
Vol 846 ◽  
pp. 318-325
Author(s):  
Taifunisyam Taib ◽  
Souad A. Mohamad ◽  
Mohd Rafie bin Johan ◽  
Wan Jefrey Basiron ◽  
Chin Kim Ming ◽  
...  

Silver-silica nanocomposites (Ag-SiO2NCs) with various compositions were synthesized through sol-gel technique. The morphology, optical and thermal stability of the nanocomposite were investigated and was compared with pure sol-gel to determine the effects of the nanoparticles. Transmission electron microscopy (TEM) confirmed that SiO2 was encapsulated Ag with mean size of 30 nm. Uv-vis spectroscopy shows that the surface plasmon resonance (SPR) peak show Ag-SiO2 NCs were greatly reduce due to the SiO2 particles. The permittivity and refractive index were decreased as the composition of Ag was increased at composition of 60% silver. The real permittivity is negative along the visible region. The trend stability of Ag-SiO2NCs were increased with the increased amount of silver.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Bharat G. Pawar ◽  
Dipak V. Pinjari ◽  
Sanjay S. Kolekar ◽  
Aniruddha B. Pandit ◽  
Sung H. Han

In this communication we report the rapid nanostructure of SnO2 with a spherical morphology which has been prepared in large scale via sol-gel method. The products were characterized with scanning electron microscopy, X-ray powder diffraction, transmission electron microscopy, FTIR, and photoluminescence spectroscopy. The strong photoluminescence of the nanosphere in visible region suggested possible application in nanoscaled optoelectronic devices. A possible growth mechanism for the SnO2 nanosphere in terms of solvation, hydrolysis, and polymerization was proposed.


2017 ◽  
Vol 4 (11) ◽  
pp. 170844 ◽  
Author(s):  
Sheng Gong ◽  
Huayao Chen ◽  
Xinhua Zhou ◽  
Sundaram Gunasekaran

We have synthesized core-shell structured 3-methacryloxypropyltrimethoxysilane (MPS) functionalized antimony-doped tin oxide nanoparticles (MANs)–poly(methyl methacrylate-co-butyl acrylate) (PMMA-co-BA, PMB) nanocomposite latex particles via miniemulsion polymerization method. Polymerizable anionic surfactant DNS-86 (allyloxy polyoxyethylene(10) nonyl ammonium sulfate) was first introduced to synthesize core-shell nanocomposite. The morphologies of synthesized MANs and MANs/PMB latex nanocomposite particles were studied with transmission electron microscopy, which revealed particles, on average 70 nm in size, with a core-shell structure. Owing to the uniformity and hydrophobicity of MANs, the MANs-embedded PMB latex nanocomposite can be tailored more precisely than other nanoparticles-embedded nanocomposites. Films incorporating 10 wt% of MANs in the MAN/PMB latex nanocomposite exhibit good transmittance in the visible region, and excellent opacity in the near infrared region. The MANs/PMB nanocomposite film also appears suitable for heat insulation applications.


2016 ◽  
Vol 16 (4) ◽  
pp. 3587-3591
Author(s):  
Qinghua Wang ◽  
Xuechuan Gao ◽  
Renfei Zhang ◽  
Beibei Shen ◽  
Zhibing Tan ◽  
...  

Visible-light photocatalyst of TiO2/La/Ag nanocomposites were successfully synthesized via the conventional sol–gel method and reducing agent of Ag+. The photocatalytic activities were evaluated by methyl orange (MO) degradation. They have remarkable photocatalytic activities compared to TiO2-Anatase, which is thanks to the separation of electron–hole pairs by Ag nanoparticles and lanthanum. The products were characterized by a series of techniques such as X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and Uv-vis. The results show that spherical nanocomposites have been prepared with the size 300 nm and Ag nanoparticles (∼10 nm) are dispersed uniformly onto the surface of TiO2/La, which forms TiO2/La/Ag nanocomposites. TiO2/La/Ag nanocomposites have good absorption in the visible region (700 nm > > > 400 nm). The reasons are as follows: (1) the efficient separation of photogenerated electrons and holes of the photocatalysts on the surface of TiO2/La/Ag nanocomposites and (2) a wide visiblelight photoabsorption range (700 nm > > 400 nm). Therefore, this study may provide some new idea for the rational design and the facile synthesis of composite catalysts with a green, efficient pathway.


2018 ◽  
Author(s):  
Hakeem K. Henry ◽  
Sang Bok Lee

The PMo<sub>12</sub>-PPy heterogeneous cathode was synthesized electrochemically. In doing so, the PMo<sub>12</sub> redox-active material was impregnated throughout the conductive polymer matrix of the poly(pyrrole) nanowires. All chemicals and reagents used were purchased from Sigma-Aldrich. Anodized aluminum oxide (AAO) purchased from Whatman served as the porous hard template for nanowire deposition. A thin layer of gold of approximately 200nm was sputtered onto the disordered side of the AAO membrane to serve as the current collector. Copper tape was connected to the sputtered gold for contact and the device was sealed in parafilm with heat with an exposed area of 0.32 cm<sup>2</sup> to serve as the electroactive area for deposition. All electrochemical synthesis and experiments were conducted using a Bio-Logic MPG2 potentiostat. The deposition was carried out using a 3-electrode beaker cell setup with a solution of acetonitrile containing 5mM and 14mM of the phosphomolybdic acid and pyrrole monomer, respectively. The synthesis was achieved using chronoamperometry to apply a constant voltage of 0.8V vs. Ag/AgCl (BASi) to oxidatively polymerize the pyrrole monomer to poly(pyrrole). To prevent the POM from chemically polymerizing the pyrrole, an injection method was used in which the pyrrole monomer was added to the POM solution only after the deposition voltage had already been applied. The deposition was well controlled by limiting the amount of charge transferred to 300mC. Following deposition, the AAO template was removed by soaking in 3M sodium hydroxide (NaOH) for 20 minutes and rinsed several times with water. After synthesis, all cathodes underwent electrochemical testing to determine their performance using cyclic voltammetry and constant current charge-discharge cycling in 0.1 M Mg(ClO<sub>4</sub>)<sub>2</sub>/PC electrolyte. The cathodes were further characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), and x-ray photoelectron spectroscopy (XPS).


2019 ◽  
Vol 25 (6) ◽  
pp. 1466-1470 ◽  
Author(s):  
Rituparna Chatterjee ◽  
Subhajit Saha ◽  
Karamjyoti Panigrahi ◽  
Uttam Kumar Ghorai ◽  
Gopes Chandra Das ◽  
...  

AbstractIn this work, strongly blue emitting Ce3+-activated BaAl2O4 nanophosphors were successfully synthesized by a sol–gel technique. The crystal structure, morphology, and microstructure of the nanophosphors have been studied by X-ray powder diffraction, field emission scanning electron microscopy, and high-resolution transmission electron microscopy. The photoluminescence spectra show the impact of concentration variation of Ce3+ on the photoluminescence emission of the phosphor. These nanophosphors display intense blue emission peaking at 422 nm generated by the Ce3+ 5d → 4f transition under 350 nm excitation. Our results reveal that this nanophosphor has the capability to take part in the emergent domain of solid-state lighting and field-emission display devices.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 937
Author(s):  
Katarzyna Halubek-Gluchowska ◽  
Damian Szymański ◽  
Thi Ngoc Lam Tran ◽  
Maurizio Ferrari ◽  
Anna Lukowiak

Looking for upconverting biocompatible nanoparticles, we have prepared by the sol–gel method, silica–calcia glass nanopowders doped with different concentration of Tm3+ and Yb3+ ions (Tm3+ from 0.15 mol% up to 0.5 mol% and Yb3+ from 1 mol% up to 4 mol%) and characterized their structure, morphology, and optical properties. X-ray diffraction patterns indicated an amorphous phase of the silica-based glass with partial crystallization of samples with a higher content of lanthanides ions. Transmission electron microscopy images showed that the average size of particles decreased with increasing lanthanides content. The upconversion (UC) emission spectra and fluorescence lifetimes were registered under near infrared excitation (980 nm) at room temperature to study the energy transfer between Yb3+ and Tm3+ at various active ions concentrations. Characteristic emission bands of Tm3+ ions in the range of 350 nm to 850 nm were observed. To understand the mechanism of Yb3+–Tm3+ UC energy transfer in the SiO2–CaO powders, the kinetics of luminescence decays were studied.


Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 224 ◽  
Author(s):  
Jung-Eun Park ◽  
Yong-Seok Jang ◽  
Tae-Sung Bae ◽  
Min-Ho Lee

Multi walled carbon nanotubes-hydroxyapatite (MWCNTs-HA) with various contents of MWCNTs was synthesized using the sol-gel method. MWCNTs-HA composites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). HA particles were generated on the surface of MWCNT. Produced MWCNTs-HA nanocomposites were coated on pure titanium (PT). Characteristic of the titanium coated MWCNTs-HA was evaluated by field-emission scanning electron microscopy (FE-SEM) and XRD. The results show that the titanium surface was covered with MWCNTs-HA nanoparticles and MWCNTs help form the crystalized hydroxyapatite. Furthermore, the MWCNTs-HA coated titanium was investigated for in vitro cellular responses. Cell proliferation and differentiation were improved on the surface of MWCNT-HA coated titanium.


Sign in / Sign up

Export Citation Format

Share Document