TRANSPORT AND LOW FIELD MAGNETIC PROPERTIES OF HIGH TcBi2CaSr2Cu2O8−δ AND Tl0.8Ca2Ba2Cu3O8+δ COMPOUNDS

1988 ◽  
Vol 02 (09) ◽  
pp. 1067-1071
Author(s):  
M.F. TAI ◽  
S.W. HSU ◽  
H.C. KU ◽  
W.N. WANG

Electrical resistivity, low field diamagnetic susceptibility (constant field-cooled in various magnetic fields) and low field magnetization measurements on new high T c superconducting copper oxides Bi 2 CaSr 2 Cu 2 O 8−δ (2122) (T c =89 K ) and thallium-deficient Tl 0.8 Ca 2 Ba 2 Cu 3 O 8+δ (0.8,2,2,3) (T c =117 K ) were reported. Meissner diamagnetic signal decreases with increasing magnetic field of these new superconducting copper oxides.

RSC Advances ◽  
2021 ◽  
Vol 11 (28) ◽  
pp. 17051-17057
Author(s):  
Anna Eichler-Volf ◽  
Yara Alsaadawi ◽  
Fernando Vazquez Luna ◽  
Qaiser Ali Khan ◽  
Simon Stierle ◽  
...  

PS/CoPd Janus particles respond very sensitively to application of low external magnetic fields. Owing to the magnetic properties, the PS/CoPd particles may be used, for example, to sense the presence of weak magnetic fields as micro-magnetometers.


Magnetostriction may be defined in general as the change of shape of a substance when it is magnetised. The phenomenon may originate from various causes, but there is one which appears to us to be of major importance. From our present conceptions of the origin of cohesion between the atoms forming a crystal lattice it appears that a considerable part of this cohesion is due to forces of electrodynamical origin; we may therefore expect to influence these forces by means of a magnetic field, and thus produce a change of shape of the body. In ferromagnetic substances magnetostriction is easily observed in ordinary magnetic fields and a number of theoretical investigations have been carried out to explain the general aspects of the phenomenon. With para- and diamagnetic substances, however, no magnetostriction has been observed.


2004 ◽  
Vol 218 ◽  
pp. 47-48
Author(s):  
Chengmin Zhang

The magnetic field strengths of most millisecond pulsars (MSPs) are about 108–9 gauss. The accretion-induced magnetic field evolution scenario here concludes that field decay is related to the accreted mass, that the minimum or bottom field stops at about 108 gauss for Eddington-limited accretion, and scales with the accretion rate as M1/2. The possibility of low field (∼ 107 gauss) MSPs has been proposed for future radio observations.


Author(s):  
Robert E. Newnham

In this chapter we deal with a number of magnetic properties and their directional dependence: pyromagnetism, magnetic susceptibility, magnetoelectricity, and piezomagnetism. In the course of dealing with these properties, two new ideas are introduced: magnetic symmetry and axial tensors. Moving electric charge generates magnetic fields and magnetization. Macroscopically, an electric current i flowing in a coil of n turns per meter produces a magnetic field H = ni amperes/meter [A/m]. On the atomic scale, magnetization arises from unpaired electron spins and unbalanced electronic orbital motion. The weber [Wb] is the basic unit of magnetic charge m. The force between two magnetic charges m1 and m2 is where r is the separation distance and μ0 (=4π×10−7 H/m) is the permeability of vacuum. In a magnetic field H, magnetic charge experiences a force F = mH [N]. North and south poles (magnetic charges) separated by a distance r create magnetic dipole moments mr [Wb m]. Magnetic dipole moments provide a convenient way of picturing the atomistic origins arising from moving electric charge. Magnetization (I) is the magnetic dipole moment per unit volume and is expressed in units of Wb m/m3 = Wb/m2. The magnetic flux density (B = I + μ0H) is also in Wb/m2 and is analogous to the electric displacement D. All materials respond to magnetic fields, producing a magnetization I = χH, and a magnetic flux density B = μH where χ is the magnetic susceptibility and μ is the magnetic permeability. Both χ and μ are in henries/m (H/m). The permeability μ = χ + μ0 and is analogous to electric permittivity. χ and μ are sometimes expressed as dimensionless quantities (x ̅ and μ ̅ and ) like the dielectric constant, where = x ̅/μ0 and = μ ̅/μ0. Other magnetic properties will be defined later in the chapter. A schematic view of the submicroscopic origins of magnetic phenomena is presented in Fig. 14.1. Most materials are diamagnetic with only a weak magnetic response induced by an applied magnetic field.


Author(s):  
Philip Judge

‘Spots and magnetic fields’ explores sunspot behaviour. We have known since 1908 that sunspots are magnetic, but why does the Sun form them at all? Is the Sun extraordinary in this, or is its behaviour in line with other stars? The Sun’s magnetic field is generated by a solar dynamo, which can be partly explained by magnetohydrodynamics (MHD)—the study of the magnetic properties and behaviour of electrically conducting fluids—however, there is no full consensus on the solar dynamo. In the 1960s the new science of helioseismology gave us insights into the Sun’s interior rotation, but we are unable to make truly critical observations in the solar interior.


2007 ◽  
Vol 62 (7) ◽  
pp. 941-948
Author(s):  
Jesús Rodríguez Fernández

Abstract Polycrystalline PrCu2, which has a quadrupolar transition at 7.7 K, has been investigated using electrical resistivity, magnetization and dilatometry techniques. To study dilution effects, two solid solutions of PrCu2, (Pr0.8La0.2)Cu2, and (Pr0.8Y0.2)Cu2, were also studied. The quadrupolar transition decreases in temperature with doping, while it increases slightly with the magnetic field. In resistivity and thermal expansion, the magnetic contributions show a clear evidence of crystal field excitations. The analysis of both properties provided benchmark values of the Debye temperature and Grüneisen parameters.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
De Wei Wong ◽  
Wei Liang Gan ◽  
Yuan Kai Teo ◽  
Wen Siang Lew

AbstractA well-established method for treating cancerous tumors is magnetic hyperthermia, which uses localized heat generated by the relaxation mechanism of magnetic nanoparticles (MNPs) in a high-frequency alternating magnetic field. In this work, we investigate the heating efficiency of cylindrical NiFe MNPs, fabricated by template-assisted pulsed electrodeposition combined with differential chemical etching. The cylindrical geometry of the MNP enables the formation of the triple vortex state, which increases the heat generation efficiency by four times. Using time-dependent calorimetric measurements, the specific absorption rate (SAR) of the MNPs was determined and compared with the numerical calculations from micromagnetic simulations and vibrating sample magnetometer measurements. The magnetization reversal of high aspect ratios MNPs showed higher remanent magnetization and low-field susceptibility leading to higher hysteresis losses, which was reflected in higher experimental and theoretical SAR values. The SAR dependence on magnetic field strength exhibited small SAR values at low magnetic fields and saturates at high magnetic fields, which is correlated to the coercive field of the MNPs and a characteristic feature of ferromagnetic MNPs. The optimization of cylindrical NiFe MNPs will play a pivotal role in producing high heating performance and biocompatible magnetic hyperthermia agents.


2006 ◽  
Vol 6 (3) ◽  
pp. 612-617
Author(s):  
Ashutosh Tiwari ◽  
J. Narayan

We report the growth of a new class of superlattice structure, consisting of alternate layers of La0.7Sr0.3MnO3 (LSMO) and ZnO, which exhibits giant magnetoresistance at low fields. These superlattices were fabricated using a novel pulsed-laser deposition technique with a specially designed target assembly. Giant magnetoresistance of >250% has been observed in these structures in current-in-plane configuration on the application of just ∼400 Gauss of magnetic field over the broad temperature range 15–200 K. Observation of giant magnetoresistance at such low magnetic fields is a groundbreaking step in the field of novel magnetic materials and devices.


2020 ◽  
Vol 8 (A) ◽  
pp. 24-36
Author(s):  
Mark Christopher Arokiaraj ◽  
Aleksandr Liubimtcev

BACKGROUND: Multifunctional nanoparticles are known for their wide range of biomedical applications. Controlling the magnetic properties of these nanoparticles is imperative for various applications, including therapeutic angiogenesis. AIM: The study was performed to evaluate the magnetic properties and their control mechanisms by the external magnetic field. METHODS: A100 nm magnetic nanoparticle was placed in the magnetic field, and parametrically, the magnet field strength and distance were evaluated. Various models of magnetic strength and disposition were evaluated. Magnetic flux density, force/weight, and magnetic gradient strength were the parameters evaluated in the electromagnetic computational software. RESULTS: The seven-coil method with three centrally placed coils as Halbach array, and each coil with a flux density of 7 Tesla, and with a coil dimension of 20 cm × 20 cm (square model) of each coil showed a good magnetic strength and force/weight parameters in a distance of 15 cm from the centrally placed coil. The particles were then evaluated for their motion characteristics in saline. It showed good displacement and acceleration properties. After that, the particles were theoretically assessed in a similar mathematical model after parametrically correcting the drag force. After the application of high drag forces, the particles showed adequate motion characteristics. When the particle size was reduced further, the motion characteristics were preserved even with high drag forces. CONCLUSION: There is potential for a novel method of controlling multifunctional magnetic nanoparticles using high magnetic fields. Further studies are required to evaluate the motion characteristics of these particles in vivo and in vitro.


2007 ◽  
Vol 21 (22) ◽  
pp. 3877-3887 ◽  
Author(s):  
AI-YUAN HU ◽  
YUAN CHEN

The two-dimensional spin-1/2 anisotropic Heisenberg ferromagnet is investigated in coexisting transverse and longitudinal magnetic fields. Using the Green function treatment, the magnetization and susceptibility are studied as a function of temperature, anisotropy and magnetic fields. The effects of exchange anisotropy and transverse magnetic field on the magnetic properties of the system are discussed.


Sign in / Sign up

Export Citation Format

Share Document