Parasitic Effects on Memristor Dynamics

2016 ◽  
Vol 26 (06) ◽  
pp. 1630014 ◽  
Author(s):  
Makoto Itoh ◽  
Leon O. Chua

In this paper, we show that parasitic elements have a significant effect on the dynamics of memristor circuits. We first show that certain [Formula: see text]-terminal elements such as memristors, memcapacitors, and meminductors can be used as nonvolatile memories, if the principle of conservation of state variables hold by open-circuiting, or short-circuiting, their terminals. We also show that a passive memristor with a strictly-increasing constitutive relation will eventually lose its stored flux when we switch off the power if there is a parasitic capacitance across the memristor. Similarly, a memcapacitor (resp., meminductor) with a positive memcapacitance (resp., meminductance) will eventually lose their stored physical states when we switch off the power, if it is connected to a parasitic resistance. We then show that the discontinuous jump that circuit engineers assumed to occur at impasse points of memristor circuits contradicts the principles of conservation of charge and flux at the time of the discontinuous jump. A parasitic element can be used to break an impasse point, resulting in the emergence of a continuous oscillation in the circuit. We also define a distance, a diameter, and a dimension, for each circuit element in order to measure the complexity order of the parasitic elements. They can be used to find higher-order parasitic elements which can break impasse points. Furthermore, we derived a memristor-based Chua’s circuit from a three-element circuit containing a memristor by connecting two parasitic memcapacitances to break the impasse points. We finally show that a higher-order parasitic element can be used for breaking the impasse points on two-dimensional and three-dimensional constrained spaces.

2013 ◽  
Vol 13 (24) ◽  
pp. 12549-12572 ◽  
Author(s):  
A. H. Berner ◽  
C. S. Bretherton ◽  
R. Wood ◽  
A. Muhlbauer

Abstract. A cloud-resolving model (CRM) coupled to a new intermediate-complexity bulk aerosol scheme is used to study aerosol–boundary-layer–cloud–precipitation interactions and the development of pockets of open cells (POCs) in subtropical stratocumulus cloud layers. The aerosol scheme prognoses mass and number concentration of a single lognormal accumulation mode with surface and entrainment sources, evolving subject to processing of activated aerosol and scavenging of dry aerosol by clouds and rain. The CRM with the aerosol scheme is applied to a range of steadily forced cases idealized from a well-observed POC. The long-term system evolution is explored with extended two-dimensional (2-D) simulations of up to 20 days, mostly with diurnally averaged insolation and 24 km wide domains, and one 10 day three-dimensional (3-D) simulation. Both 2-D and 3-D simulations support the Baker–Charlson hypothesis of two distinct aerosol–cloud "regimes" (deep/high-aerosol/non-drizzling and shallow/low-aerosol/drizzling) that persist for days; transitions between these regimes, driven by either precipitation scavenging or aerosol entrainment from the free-troposphere (FT), occur on a timescale of ten hours. The system is analyzed using a two-dimensional phase plane with inversion height and boundary layer average aerosol concentrations as state variables; depending on the specified subsidence rate and availability of FT aerosol, these regimes are either stable equilibria or distinct legs of a slow limit cycle. The same steadily forced modeling framework is applied to the coupled development and evolution of a POC and the surrounding overcast boundary layer in a larger 192 km wide domain. An initial 50% aerosol reduction is applied to half of the model domain. This has little effect until the stratocumulus thickens enough to drizzle, at which time the low-aerosol portion transitions into open-cell convection, forming a POC. Reduced entrainment in the POC induces a negative feedback between the areal fraction covered by the POC and boundary layer depth changes. This stabilizes the system by controlling liquid water path and precipitation sinks of aerosol number in the overcast region, while also preventing boundary layer collapse within the POC, allowing the POC and overcast to coexist indefinitely in a quasi-steady equilibrium.


1980 ◽  
Vol 102 (4) ◽  
pp. 190-196 ◽  
Author(s):  
Ibrahim Konuk

A unified three-dimensional formulation of the pipeline or riser problems is developed by following the rod theories. A rigorous singular perturbation technique is used to solve the associated two-dimensional nonlinear problem. The results can be used with a programmable calculator.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Eunwoo Lee ◽  
Rokyeon Kim ◽  
Junyeong Ahn ◽  
Bohm-Jung Yang

AbstractBased on first-principles calculations and tight-binding model analysis, we propose monolayer graphdiyne as a candidate material for a two-dimensional higher-order topological insulator protected by inversion symmetry. Despite the absence of chiral symmetry, the higher-order topology of monolayer graphdiyne is manifested in the filling anomaly and charge accumulation at two corners. Although its low energy band structure can be properly described by the tight-binding Hamiltonian constructed by using only the pz orbital of each atom, the corresponding bulk band topology is trivial. The nontrivial bulk topology can be correctly captured only when the contribution from the core levels derived from px,y and s orbitals are included, which is further confirmed by the Wilson loop calculations. We also show that the higher-order band topology of a monolayer graphdyine gives rise to the nontrivial band topology of the corresponding three-dimensional material, ABC-stacked graphdiyne, which hosts monopole nodal lines and hinge states.


Aerospace ◽  
2020 ◽  
Vol 7 (5) ◽  
pp. 60
Author(s):  
Julia A. Cole ◽  
Mark D. Maughmer ◽  
Goetz Bramesfeld ◽  
Michael Melville ◽  
Michael Kinzel

An unsteady formulation of the Kutta–Joukowski theorem has been used with a higher-order potential flow method for the prediction of three-dimensional unsteady lift. This study describes the implementation and verification of the approach in detail sufficient for reproduction by future developers. Verification was conducted using the classical responses to a two-dimensional airfoil entering a sharp-edged gust and a sinusoidal gust with errors of less than 1% for both. The method was then compared with the three-dimensional unsteady lift response of a wing as modeled in two unsteady vortex-lattice methods. Results showed agreement in peak lift coefficient prediction to within 1% and 7%, respectively, and mean agreement within 0.25% for the full response.


Author(s):  
H.A. Cohen ◽  
T.W. Jeng ◽  
W. Chiu

This tutorial will discuss the methodology of low dose electron diffraction and imaging of crystalline biological objects, the problems of data interpretation for two-dimensional projected density maps of glucose embedded protein crystals, the factors to be considered in combining tilt data from three-dimensional crystals, and finally, the prospects of achieving a high resolution three-dimensional density map of a biological crystal. This methodology will be illustrated using two proteins under investigation in our laboratory, the T4 DNA helix destabilizing protein gp32*I and the crotoxin complex crystal.


Author(s):  
B. Ralph ◽  
A.R. Jones

In all fields of microscopy there is an increasing interest in the quantification of microstructure. This interest may stem from a desire to establish quality control parameters or may have a more fundamental requirement involving the derivation of parameters which partially or completely define the three dimensional nature of the microstructure. This latter categorey of study may arise from an interest in the evolution of microstructure or from a desire to generate detailed property/microstructure relationships. In the more fundamental studies some convolution of two-dimensional data into the third dimension (stereological analysis) will be necessary.In some cases the two-dimensional data may be acquired relatively easily without recourse to automatic data collection and further, it may prove possible to perform the data reduction and analysis relatively easily. In such cases the only recourse to machines may well be in establishing the statistical confidence of the resultant data. Such relatively straightforward studies tend to result from acquiring data on the whole assemblage of features making up the microstructure. In this field data mode, when parameters such as phase volume fraction, mean size etc. are sought, the main case for resorting to automation is in order to perform repetitive analyses since each analysis is relatively easily performed.


Author(s):  
Yu Liu

The image obtained in a transmission electron microscope is the two-dimensional projection of a three-dimensional (3D) object. The 3D reconstruction of the object can be calculated from a series of projections by back-projection, but this algorithm assumes that the image is linearly related to a line integral of the object function. However, there are two kinds of contrast in electron microscopy, scattering and phase contrast, of which only the latter is linear with the optical density (OD) in the micrograph. Therefore the OD can be used as a measure of the projection only for thin specimens where phase contrast dominates the image. For thick specimens, where scattering contrast predominates, an exponential absorption law holds, and a logarithm of OD must be used. However, for large thicknesses, the simple exponential law might break down due to multiple and inelastic scattering.


Author(s):  
D. E. Johnson

Increased specimen penetration; the principle advantage of high voltage microscopy, is accompanied by an increased need to utilize information on three dimensional specimen structure available in the form of two dimensional projections (i.e. micrographs). We are engaged in a program to develop methods which allow the maximum use of information contained in a through tilt series of micrographs to determine three dimensional speciman structure.In general, we are dealing with structures lacking in symmetry and with projections available from only a limited span of angles (±60°). For these reasons, we must make maximum use of any prior information available about the specimen. To do this in the most efficient manner, we have concentrated on iterative, real space methods rather than Fourier methods of reconstruction. The particular iterative algorithm we have developed is given in detail in ref. 3. A block diagram of the complete reconstruction system is shown in fig. 1.


Author(s):  
A.M. Jones ◽  
A. Max Fiskin

If the tilt of a specimen can be varied either by the strategy of observing identical particles orientated randomly or by use of a eucentric goniometer stage, three dimensional reconstruction procedures are available (l). If the specimens, such as small protein aggregates, lack periodicity, direct space methods compete favorably in ease of implementation with reconstruction by the Fourier (transform) space approach (2). Regardless of method, reconstruction is possible because useful specimen thicknesses are always much less than the depth of field in an electron microscope. Thus electron images record the amount of stain in columns of the object normal to the recording plates. For single particles, practical considerations dictate that the specimen be tilted precisely about a single axis. In so doing a reconstructed image is achieved serially from two-dimensional sections which in turn are generated by a series of back-to-front lines of projection data.


Sign in / Sign up

Export Citation Format

Share Document