scholarly journals ASYMPTOTIC EXPANSION FOR DAMPED WAVE EQUATIONS WITH PERIODIC COEFFICIENTS

2001 ◽  
Vol 11 (07) ◽  
pp. 1285-1310 ◽  
Author(s):  
R. ORIVE ◽  
E. ZUAZUA ◽  
A. F. PAZOTO

We consider a linear dissipative wave equation in ℝN with periodic coefficients. By means of Bloch wave decomposition, we obtain an expansion of solutions as t→∞ and conclude that, in a first approximation, the solutions behave as the homogenized heat kernel.

2016 ◽  
Vol 26 (14) ◽  
pp. 2651-2684 ◽  
Author(s):  
Assyr Abdulle ◽  
Timothée Pouchon

A family of effective equations that capture the long time dispersive effects of wave propagation in heterogeneous media in an arbitrary large periodic spatial domain [Formula: see text] is proposed and analyzed. For a wave equation with highly oscillatory periodic spatial tensors of characteristic length [Formula: see text], we prove that the solution of any member of our family of effective equations is [Formula: see text]-close to the true oscillatory wave over a time interval of length [Formula: see text] in a norm equivalent to the [Formula: see text] norm. We show that the previously derived effective equation in [T. Dohnal, A. Lamacz and B. Schweizer, Bloch-wave homogenization on large time scales and dispersive effective wave equations, Multiscale Model. Simulat. 12 (2014) 488–513] belongs to our family of effective equations. Moreover, while Bloch wave techniques were previously used, we show that asymptotic expansion techniques give an alternative way to derive such effective equations. An algorithm to compute the tensors involved in the dispersive equation and allowing for efficient numerical homogenization methods over long time is proposed.


2021 ◽  
pp. 1-42
Author(s):  
Grégoire Allaire ◽  
Agnes Lamacz-Keymling ◽  
Jeffrey Rauch

This article examines the accuracy for large times of asymptotic expansions from periodic homogenization of wave equations. As usual, ϵ denotes the small period of the coefficients in the wave equation. We first prove that the standard two scale asymptotic expansion provides an accurate approximation of the exact solution for times t of order ϵ − 2 + δ for any δ > 0. Second, for longer times, we show that a different algorithm, that is called criminal because it mixes different powers of ϵ, yields an approximation of the exact solution with error O ( ϵ N ) for times ϵ − N with N as large as one likes. The criminal algorithm involves high order homogenized equations that, in the context of the wave equation, were first proposed by Santosa and Symes and analyzed by Lamacz. The high order homogenized equations yield dispersive corrections for moderate wave numbers. We give a systematic analysis for all time scales and all high order corrective terms.


2009 ◽  
Vol 06 (01) ◽  
pp. 1-23 ◽  
Author(s):  
JIANFENG LIANG

For semi-linear dissipative wave equation □u + |ut|p - 1ut = 0, we consider finite energy solutions with singularities propagating along a focusing light cone. At the tip of cone, the singularities are focused and partially smoothed out under strong nonlinear dissipation, i.e. the solution gets up to 1/2 more L2 derivative after the focus. The smoothing phenomenon is in fact the result of simultaneous action of focusing and nonlinear dissipation.


2020 ◽  
Vol 11 (1) ◽  
pp. 93-100
Author(s):  
Vina Apriliani ◽  
Ikhsan Maulidi ◽  
Budi Azhari

One of the phenomenon in marine science that is often encountered is the phenomenon of water waves. Waves that occur below the surface of seawater are called internal waves. One of the mathematical models that can represent solitary internal waves is the modified Korteweg-de Vries (mKdV) equation. Many methods can be used to construct the solution of the mKdV wave equation, one of which is the extended F-expansion method. The purpose of this study is to determine the solution of the mKdV wave equation using the extended F-expansion method. The result of solving the mKdV wave equation is the exact solutions. The exact solutions of the mKdV wave equation are expressed in the Jacobi elliptic functions, trigonometric functions, and hyperbolic functions. From this research, it is expected to be able to add insight and knowledge about the implementation of the innovative methods for solving wave equations. 


Author(s):  
Peter Straka ◽  
Mark Meerschaert ◽  
Robert McGough ◽  
Yuzhen Zhou

AbstractFractional wave equations with attenuation have been proposed by Caputo [5], Szabo [28], Chen and Holm [7], and Kelly et al. [11]. These equations capture the power-law attenuation with frequency observed in many experimental settings when sound waves travel through inhomogeneous media. In particular, these models are useful for medical ultrasound. This paper develops stochastic solutions and weak solutions to the power law wave equation of Kelly et al. [11].


1990 ◽  
Vol 44 (2) ◽  
pp. 361-375 ◽  
Author(s):  
Andrew N. Wright

In a cold plasma the wave equation for solely compressional magnetic field perturbations appears to decouple in any surface orthogonal to the background magnetic field. However, the compressional fields in any two of these surfaces are related to each other by the condition that the perturbation field b be divergence-free. Hence the wave equations in these surfaces are not truly decoupled from one another. If the two solutions happen to be ‘matched’ (i.e. V.b = 0) then the medium may execute a solely compressional oscillation. If the two solutions are unmatched then transverse fields must evolve. We consider two classes of compressional solutions and derive a set of criteria for when the medium will be able to support pure compressional field oscillations. These criteria relate to the geometry of the magnetic field and the plasma density distribution. We present the conditions in such a manner that it is easy to see if a given magnetoplasma is able to executive either of the compressional solutions we investigate.


2021 ◽  
Vol 5 (1) ◽  
pp. 314-336
Author(s):  
Tristram de Piro ◽  

We clarify some arguments concerning Jefimenko’s equations, as a way of constructing solutions to Maxwell’s equations, for charge and current satisfying the continuity equation. We then isolate a condition on non-radiation in all inertial frames, which is intuitively reasonable for the stability of an atomic system, and prove that the condition is equivalent to the charge and current satisfying certain relations, including the wave equations. Finally, we prove that with these relations, the energy in the electromagnetic field is quantised and displays the properties of the Balmer series.


2018 ◽  
Vol 2018 ◽  
pp. 1-18
Author(s):  
Nguyen Huu Nhan ◽  
Le Thi Phuong Ngoc ◽  
Nguyen Thanh Long

We consider the Robin-Dirichlet problem for a nonlinear wave equation of Kirchhoff-Carrier type. Using the Faedo-Galerkin method and the linearization method for nonlinear terms, the existence and uniqueness of a weak solution are proved. An asymptotic expansion of high order in a small parameter of a weak solution is also discussed.


Sign in / Sign up

Export Citation Format

Share Document