scholarly journals MODELLING THE RESPONSE OF VASCULAR TUMOURS TO CHEMOTHERAPY: A MULTISCALE APPROACH

2006 ◽  
Vol 16 (supp01) ◽  
pp. 1219-1241 ◽  
Author(s):  
HELEN M. BYRNE ◽  
MARKUS R. OWEN ◽  
TOMAS ALARCON ◽  
JAMES MURPHY ◽  
PHILIP K. MAINI

An existing multiscale model is extended to study the response of a vascularised tumour to treatment with chemotherapeutic drugs which target proliferating cells. The underlying hybrid cellular automaton model couples tissue-level processes (e.g. blood flow, vascular adaptation, oxygen and drug transport) with cellular and subcellular phenomena (e.g. competition for space, progress through the cell cycle, natural cell death and drug-induced cell kill and the expression of angiogenic factors). New simulations suggest that, in the absence of therapy, vascular adaptation induced by angiogenic factors can stimulate spatio-temporal oscillations in the tumour's composition. Numerical simulations are presented and show that, depending on the choice of model parameters, when a drug which kills proliferating cells is continuously infused through the vasculature, three cases may arise: the tumour is eliminated by the drug; the tumour continues to expand into the normal tissue; or, the tumour undergoes spatio-temporal oscillations, with regions of high vascular and tumour cell density alternating with regions of low vascular and tumour cell density. The implications of these results and possible directions for future research are also discussed.

2021 ◽  
pp. 1351010X2098690
Author(s):  
Romana Rust ◽  
Achilleas Xydis ◽  
Kurt Heutschi ◽  
Nathanael Perraudin ◽  
Gonzalo Casas ◽  
...  

In this paper, we present a novel interdisciplinary approach to study the relationship between diffusive surface structures and their acoustic performance. Using computational design, surface structures are iteratively generated and 3D printed at 1:10 model scale. They originate from different fabrication typologies and are designed to have acoustic diffusion and absorption effects. An automated robotic process measures the impulse responses of these surfaces by positioning a microphone and a speaker at multiple locations. The collected data serves two purposes: first, as an exploratory catalogue of different spatio-temporal-acoustic scenarios and second, as data set for predicting the acoustic response of digitally designed surface geometries using machine learning. In this paper, we present the automated data acquisition setup, the data processing and the computational generation of diffusive surface structures. We describe first results of comparative studies of measured surface panels and conclude with steps of future research.


Author(s):  
P. V. Kuper ◽  
M. Breunig ◽  
M. Al-Doori ◽  
A. Thomsen

Many of today´s world wide challenges such as climate change, water supply and transport systems in cities or movements of crowds need spatio-temporal data to be examined in detail. Thus the number of examinations in 3D space dealing with geospatial objects moving in space and time or even changing their shapes in time will rapidly increase in the future. Prominent spatio-temporal applications are subsurface reservoir modeling, water supply after seawater desalination and the development of transport systems in mega cities. All of these applications generate large spatio-temporal data sets. However, the modeling, management and analysis of 3D geo-objects with changing shape and attributes in time still is a challenge for geospatial database architectures. In this article we describe the application of concepts for the modeling, management and analysis of 2.5D and 3D spatial plus 1D temporal objects implemented in DB4GeO, our service-oriented geospatial database architecture. An example application with spatio-temporal data of a landfill, near the city of Osnabrück in Germany demonstrates the usage of the concepts. Finally, an outlook on our future research focusing on new applications with big data analysis in three spatial plus one temporal dimension in the United Arab Emirates, especially the Dubai area, is given.


MAUSAM ◽  
2021 ◽  
Vol 72 (3) ◽  
pp. 597-606
Author(s):  
CHINMAYA PANDA ◽  
DWARIKA MOHAN DAS ◽  
B. C. SAHOO ◽  
B. PANIGRAHI ◽  
K. K. SINGH

In this present study, Soil and Water Assessment Tool (SWAT) embedded with ArcGIS interface has been used to simulate the surface runoff from the un-gauged sub-catchments in the upper catchment of Subarnarekha basin. Model calibration and validation were performed with the help of Sequential Uncertainty Fitting (SUFI-2) in-built in the SWAT-CUP package (SWAT Calibration Uncertainty Programs). The model was calibrated for a period from 1996 to 2008 with 3 years warm up period (1996-1998) and validated for a period of 5 years from 2009 to 2013. The model evaluation was performed by Nash - Sutcliffe coefficient (NSE), Coefficient of determination (R2) and Percentage Bias (PBIAS). The degree of uncertainty was evaluated by P and R factors. Basing upon the R2, NSE and PBIAS values respectively, of the order of 0.90, 0.90 and -12%, during calibration and 0.85, 0.83 and -15% during validation, substantiate performance of the model. All uncertainties of model parameters have been well taken by the P and R factors respectively, of the order of 0.95 and 0.77 during calibration and 0.82 and 0.87 during validation. The runoff generation from 19 sub-catchments of Adityapur catchment varies from 29.2-44.1% of the annual rainfall and average surface runoff simulated for the entire catchment is 545 mm. As the surface runoff generated in most of the sub-catchments amounts to above 30% of rainfall, it is recommended for adequate number of structural interventions at appropriate locations in the catchment to store the rainfall excess for providing irrigation, recharging groundwater and restricting the sediment and nutrient loss.


2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Corrado Rainone ◽  
Pierfrancesco Urbani ◽  
Francesco Zamponi ◽  
Edan Lerner ◽  
Eran Bouchbinder

Structural glasses feature quasilocalized excitations whose frequencies \omegaω follow a universal density of states {D}(\omega)\!\sim\!\omega^4D(ω)∼ω4. Yet, the underlying physics behind this universality is not fully understood. Here we study a mean-field model of quasilocalized excitations in glasses, viewed as groups of particles embedded inside an elastic medium and described collectively as anharmonic oscillators. The oscillators, whose harmonic stiffness is taken from a rather featureless probability distribution (of upper cutoff \kappa_0κ0) in the absence of interactions, interact among themselves through random couplings (characterized by a strength JJ) and with the surrounding elastic medium (an interaction characterized by a constant force hh). We first show that the model gives rise to a gapless density of states {D}(\omega)\!=\!A_{g}\,\omega^4D(ω)=Agω4 for a broad range of model parameters, expressed in terms of the strength of the oscillators’ stabilizing anharmonicity, which plays a decisive role in the model. Then — using scaling theory and numerical simulations — we provide a complete understanding of the non-universal prefactor A_{g}(h,J,\kappa_0)Ag(h,J,κ0), of the oscillators’ interaction-induced mean square displacement and of an emerging characteristic frequency, all in terms of properly identified dimensionless quantities. In particular, we show that A_{g}(h,J,\kappa_0)Ag(h,J,κ0) is a non-monotonic function of JJ for a fixed hh, varying predominantly exponentially with -(\kappa_0 h^{2/3}\!/J^2)−(κ0h2/3/J2) in the weak interactions (small JJ) regime — reminiscent of recent observations in computer glasses — and predominantly decays as a power-law for larger JJ, in a regime where hh plays no role. We discuss the physical interpretation of the model and its possible relations to available observations in structural glasses, along with delineating some future research directions.


2020 ◽  
Author(s):  
Thijs Defraeye ◽  
Flora Bahrami ◽  
Rene M Rossi

Transdermal drug delivery systems are a key technology to administer drugs with a high first-pass effect in a non-invasive and controlled way. Physics-based modeling and simulation are on their way to become a cornerstone in the engineering of these healthcare devices since it provides a unique complementarity to experimental data and insights. Simulations enable to virtually probe the drug transport inside the skin at each point in time and space. However, the tedious experimental or numerical determination of material properties currently forms a bottleneck in the modeling workflow. We show that multiparameter inverse modeling to determine the drug diffusion and partition coefficients is a fast and reliable alternative. We demonstrate this strategy for transdermal delivery of fentanyl. We found that inverse modeling reduced the normalized root mean square deviation of the measured drug uptake flux from 26 to 9%, when compared to the experimental measurement of all skin properties. We found that this improved agreement with experiments was only possible if the diffusion in the reservoir holding the drug was smaller than the experimentally-measured diffusion coefficients suggested. For indirect inverse modeling, which systematically explores the entire parametric space, 30 000 simulations were required. By relying on direct inverse modeling, we reduced the number of simulations to be performed to only 300, so a factor 100 difference. The modeling approach's added value is that it can be calibrated once in-silico for all model parameters simultaneously by solely relying on a single measurement of the drug uptake flux evolution over time. We showed that this calibrated model could accurately be used to simulate transdermal patches with other drug doses. We showed that inverse modeling is a fast way to build up an accurate mechanistic model for drug delivery. This strategy opens the door to clinically-ready therapy that is tailored to patients.


2018 ◽  
Vol 44 (1) ◽  
pp. 7 ◽  
Author(s):  
M. Oliva

The Little Ice Age (LIA) constitutes the coldest period of the last millennia in Europe. A wide range of natural and historical records show evidence of colder climate conditions between the 14th and 19th centuries, together with a higher frequency of extreme hydroclimatic events. During these centuries, temperatures and precipitations showed different spatio-temporal patterns across Europe. This Special Issue includes eleven scientific works focusing on the climate regime, environmental dynamics as well as socio-economic implications of the LIA in Europe. Besides, this paper also identifies key guidelines for future research on the LIA causes and its consequences on environmental systems in the European continent.


Reproduction ◽  
2010 ◽  
Vol 140 (1) ◽  
pp. 165-174 ◽  
Author(s):  
Anna T Grazul-Bilska ◽  
Pawel P Borowicz ◽  
Mary Lynn Johnson ◽  
Megan A Minten ◽  
Jerzy J Bilski ◽  
...  

Placental vascular development (angiogenesis) is critical for placental function and thus for normal embryonic/fetal growth and development. Specific environmental factors or use of assisted reproductive techniques may result in poor placental angiogenesis, which may contribute to embryonic losses and/or fetal growth retardation. Uterine tissues were collected on days 14, 16, 18, 20, 22, 24, 26, 28, and 30 after mating and on day 10 after estrus (nonpregnant controls) to determine vascular development and expression of several factors involved in the regulation of angiogenesis in the endometrium. Compared with controls, several measurements of endometrial vascularity increased (P<0.001) including vascular labeling index (LI; proportion of proliferating cells), the tissue area occupied by capillaries, area per capillary (capillary size), total capillary circumference per unit of tissue area, and expression of factor VIII (marker of endothelial cells), but capillary number decreased (P<0.001). Compared with controls, mRNA for placental growth factor, vascular endothelial growth factor receptors, angiopoietins (ANGPT) 1 and 2, ANGPT receptorTEK, endothelial nitric oxide synthase, and hypoxia-inducible factor 1α increased (P<0.05) during early pregnancy. Vascular LI was positively correlated (P<0.05) with several measurements of vascularity and with mRNA expression of angiogenic factors. These data indicate that endometrial angiogenesis, manifested by increased vascularity and increased expression of several factors involved in the regulation of angiogenesis, is initiated very early in pregnancy. This more complete description of early placental angiogenesis may provide the foundation for determining whether placental vascular development is altered in compromised pregnancies.


The Auk ◽  
2019 ◽  
Vol 136 (1) ◽  
Author(s):  
Andrew M Allen ◽  
Bruno J Ens ◽  
Martijn Van de Pol ◽  
Henk Van der Jeugd ◽  
Magali Frauendorf ◽  
...  

Abstract Migratory connectivity describes linkages between breeding and non-breeding areas. An ongoing challenge is tracking avian species between breeding and non-breeding areas and hence estimating migratory connectivity and seasonal survival. Collaborative color-ringing projects between researchers and citizen scientists provide opportunities for tracking the annual movements of avian species. Our study describes seasonal survival and migratory connectivity using data from more than 4,600 individuals with over 51,000 observations, predominantly collected by citizen scientists. Our study focuses on the Eurasian Oystercatcher (Haematopus ostralegus), a species that has experienced a substantial and ongoing decline in recent decades. Multiple threats have been described, and given that these threats vary in space and time, there is an urgent need to estimate demographic rates at the appropriate spatio-temporal scale. We performed a seasonal multi-state (5 geographical areas within The Netherlands) live- and dead-recoveries analysis under varying model structures to account for biological and data complexity. Coastal breeding populations were largely sedentary, while inland breeding populations were migratory and the direction of migration varied among areas, which has not been described previously. Our results indicated that survival was lower during winter than summer and that survival was lower in inland areas compared with coastal areas. A concerning result was that seasonal survival of individuals over-wintering in the Wadden Sea, an internationally important site for over-wintering shorebirds, appeared to decline during the study period. We discuss the outcomes of our study, and how citizen science was integral for conducting this study. Our findings identify how the demographic rates of the oystercatcher vary in space and time, knowledge that is vital for generating hypotheses and prioritizing future research into the causes of decline.


Author(s):  
Robert A. Van Gorder

The Turing and Benjamin–Feir instabilities are two of the primary instability mechanisms useful for studying the transition from homogeneous states to heterogeneous spatial or spatio-temporal states in reaction–diffusion systems. We consider the case when the underlying reaction–diffusion system is non-autonomous or has a base state which varies in time, as in this case standard approaches, which rely on temporal eigenvalues, break down. We are able to establish respective criteria for the onset of each instability using comparison principles, obtaining inequalities which involve the in general time-dependent model parameters and their time derivatives. In the autonomous limit where the base state is constant in time, our results exactly recover the respective Turing and Benjamin–Feir conditions known in the literature. Our results make the Turing and Benjamin–Feir analysis amenable for a wide collection of applications, and allow one to better understand instabilities emergent due to a variety of non-autonomous mechanisms, including time-varying diffusion coefficients, time-varying reaction rates, time-dependent transitions between reaction kinetics and base states which change in time (such as heteroclinic connections between unique steady states, or limit cycles), to name a few examples.


Author(s):  
Teresa Chambel ◽  
Carmen Zahn ◽  
Matthias Finke

This chapter discusses how advanced digital video technologies, such as hypervideo, can be used to broaden the spectrum of meaningful learning activities. Hypervideo is conceptualized as the true integration of video into nonlinear information structures by means of spatio-temporal links. Based on cognitive-psychological perspectives, the discussion focuses on the way cognitive and socio-cognitive processes relate to the specific characteristics of hyperlinked videos, and how they inform their design. Then, with regard to technology, two approaches are introduced, providing tools for knowledge building and interaction with nonlinear information structures based on dynamic video information. Case studies and research findings are presented and prospects for future research are outlined.


Sign in / Sign up

Export Citation Format

Share Document