MACHINE LEARNING ON CONGESTION ANALYSIS BASED REAL-TIME NAVIGATION SYSTEM

2011 ◽  
Vol 20 (04) ◽  
pp. 753-781
Author(s):  
KAI CHEN ◽  
KIA MAKKI ◽  
NIKI PISSINOU

In the metropolitan region, most congestion or traffic jams are caused by the uneven distribution of traffic flow that creates bottleneck points where the traffic volume exceeds the road capacity. Additionally, unexpected incidents are the next most probable cause of these bottleneck regions. Moreover, most drivers are driving based on their empirical experience without awareness of real-time traffic situations. This unintelligent traffic behavior can make the congestion problem worse. Prediction based route guidance systems show great improvements in solving the inefficient diversion strategy problem by estimating future travel time when calculating accurate travel time is difficult. However, performances of machine learning based prediction models that are based on the historical data set degrade sharply during a congestion situation. This paper develops a new navigation system for reducing travel time of an individual driver and distributing the flow of urban traffic efficiently in order to reduce the occurrence of congestion. Compared with previous route guidance systems, the results reveal that our system, applying the advanced multi-lane prediction based real-time fastest path (AMPRFP) algorithm, can significantly reduce the travel time especially when drivers travel in a complex route environment and face frequent congestion problems. Unlike the previous system,1 it can be applied either for single lane or multi-lane urban traffic networks where the reason for congestion is significantly complex. We also demonstrate the advantages of this system and verify the results using real highway traffic data and a synthetic experiment.

Webology ◽  
2021 ◽  
Vol 18 (05) ◽  
pp. 1212-1225
Author(s):  
Siva C ◽  
Maheshwari K.G ◽  
Nalinipriya G ◽  
Priscilla Mary J

In our day to day life, the availability of correctly labelled data as well as handling of categorical data are mostly acknowledged as two main challenges in dynamic analysis. Therefore, clustering techniques are applied on unlabelled data to group them in accordance with the homogeneity. There are many prediction methods that are being popularly used in handling forecasting problems in real time environment. The outbreak of coronavirus disease (COVID19)-2019 creates the need for a medical emergency of worldwide concern with a rapidly high danger of open out and strike the entire world. Recently, the ML prediction models were used in many real time applications which necessitate the identification and categorization for real time environment. In medical field Prediction models are vital role to obtain observations of spread and significances of infectious diseases. Machine learning related forecasting mechanisms have showed their importance to develop the decision making on the upcoming course of actions. The K-means algorithm and hierarchy were applied directly on the renewed dataset using R programming language to create the covid patient cluster. Confirmed Covid patients count are passed to Prophet package, then the prophet model has been created. This forecasts model predicts the future covid count, which is essential for the clinical and healthcare leaders to make the appropriate measures in advance. The results of the experiments indicate that the quality of Hierarchical clustering outperforms than the K-Means clustering algorithm in the structured structured dataset. Thus, the prediction model also used to support model predictions help for the officials to take timely actions and make decisions to contain the COVID-19 dilemma. This work concludes Hierarchical clustering algorithm is the best model for clustering the covid data set obtained from world health organization (WHO).


2021 ◽  
Vol 11 ◽  
Author(s):  
Ji-Yeon Kim ◽  
Yong Seok Lee ◽  
Jonghan Yu ◽  
Youngmin Park ◽  
Se Kyung Lee ◽  
...  

Several prognosis prediction models have been developed for breast cancer (BC) patients with curative surgery, but there is still an unmet need to precisely determine BC prognosis for individual BC patients in real time. This is a retrospectively collected data analysis from adjuvant BC registry at Samsung Medical Center between January 2000 and December 2016. The initial data set contained 325 clinical data elements: baseline characteristics with demographics, clinical and pathologic information, and follow-up clinical information including laboratory and imaging data during surveillance. Weibull Time To Event Recurrent Neural Network (WTTE-RNN) by Martinsson was implemented for machine learning. We searched for the optimal window size as time-stamped inputs. To develop the prediction model, data from 13,117 patients were split into training (60%), validation (20%), and test (20%) sets. The median follow-up duration was 4.7 years and the median number of visits was 8.4. We identified 32 features related to BC recurrence and considered them in further analyses. Performance at a point of statistics was calculated using Harrell's C-index and area under the curve (AUC) at each 2-, 5-, and 7-year points. After 200 training epochs with a batch size of 100, the C-index reached 0.92 for the training data set and 0.89 for the validation and test data sets. The AUC values were 0.90 at 2-year point, 0.91 at 5-year point, and 0.91 at 7-year point. The deep learning-based final model outperformed three other machine learning-based models. In terms of pathologic characteristics, the median absolute error (MAE) and weighted mean absolute error (wMAE) showed great results of as little as 3.5%. This BC prognosis model to determine the probability of BC recurrence in real time was developed using information from the time of BC diagnosis and the follow-up period in RNN machine learning model.


2019 ◽  
Vol 21 (9) ◽  
pp. 662-669 ◽  
Author(s):  
Junnan Zhao ◽  
Lu Zhu ◽  
Weineng Zhou ◽  
Lingfeng Yin ◽  
Yuchen Wang ◽  
...  

Background: Thrombin is the central protease of the vertebrate blood coagulation cascade, which is closely related to cardiovascular diseases. The inhibitory constant Ki is the most significant property of thrombin inhibitors. Method: This study was carried out to predict Ki values of thrombin inhibitors based on a large data set by using machine learning methods. Taking advantage of finding non-intuitive regularities on high-dimensional datasets, machine learning can be used to build effective predictive models. A total of 6554 descriptors for each compound were collected and an efficient descriptor selection method was chosen to find the appropriate descriptors. Four different methods including multiple linear regression (MLR), K Nearest Neighbors (KNN), Gradient Boosting Regression Tree (GBRT) and Support Vector Machine (SVM) were implemented to build prediction models with these selected descriptors. Results: The SVM model was the best one among these methods with R2=0.84, MSE=0.55 for the training set and R2=0.83, MSE=0.56 for the test set. Several validation methods such as yrandomization test and applicability domain evaluation, were adopted to assess the robustness and generalization ability of the model. The final model shows excellent stability and predictive ability and can be employed for rapid estimation of the inhibitory constant, which is full of help for designing novel thrombin inhibitors.


2021 ◽  
Author(s):  
Temirlan Zhekenov ◽  
Artem Nechaev ◽  
Kamilla Chettykbayeva ◽  
Alexey Zinovyev ◽  
German Sardarov ◽  
...  

SUMMARY Researchers base their analysis on basic drilling parameters obtained during mud logging and demonstrate impressive results. However, due to limitations imposed by data quality often present during drilling, those solutions often tend to lose their stability and high levels of predictivity. In this work, the concept of hybrid modeling was introduced which allows to integrate the analytical correlations with algorithms of machine learning for obtaining stable solutions consistent from one data set to another.


2020 ◽  
Vol 13 (1) ◽  
pp. 517-538 ◽  
Author(s):  
Pangwei Wang ◽  
Hui Deng ◽  
Juan Zhang ◽  
Mingfang Zhang

Advancement in the novel technology of connected vehicles has presented opportunities and challenges for smart urban transport and land use. To improve the capacity of urban transport and optimize land-use planning, a novel real-time regional route planning model based on vehicle to X communication (V2X) is presented in this paper. First, considering the traffic signal timing and phase information collected by V2X, road section resistance values are calculated dynamically based on real-time vehicular driving data. Second, according to the topology structure of the current regional road network, all predicted routes are listed based on the Dijkstra algorithm. Third, the predicted travel time of each alternative route is calculated, while the predicted route with the least travel time is selected as the optimal route. Finally, we design the test scenario with different traffic saturation levels and collect 150 sets of data to analyze the feasibility of the proposed method. The numerical results have shown that the average travel times calculated by the proposed optimal route are 8.97 seconds, 12.54 seconds, and 21.85 seconds, which are much shorter than the results of traditional navigation routes. This proposed model can be further applied to the whole urban traffic network and contribute to a greater transport and land-use efficiency in the future.


2021 ◽  
pp. 1-21
Author(s):  
Hany Gamal ◽  
Ahmed Alsaihati ◽  
Salaheldin Elkatatny ◽  
Saleh Haidary ◽  
Abdulazeez Abdulraheem

Abstract The rock unconfined compressive strength (UCS) is one of the key parameters for geomechanical and reservoir modeling in the petroleum industry. Obtaining the UCS by conventional methods such as experimental work or empirical correlation from logging data are time consuming and highly cost. To overcome these drawbacks, this paper utilized the help of artificial intelligence (AI) to predict (in a real-time) the rock strength from the drilling parameters using two AI tools. Random forest (RF) based on principal component analysis (PCA), and functional network (FN) techniques were employed to build two UCS prediction models based on the drilling data such as weight on bit (WOB), drill string rotating-speed (RS), drilling torque (T), stand-pipe pressure (SPP), mud pumping rate (Q), and the rate of penetration (ROP). The models were built using 2,333 data points from well (A) with 70:30 training to testing ratio. The models were validated using unseen data set (1,300 data points) of Well (B) which is located in the same field and drilled across the same complex lithology. The results of the PCA-based RF model outperformed the FN in terms of correlation coefficient (R) and average absolute percentage error (AAPE). The overall accuracy for PCA-based RF was R of 0.99 and AAPE of 4.3 %, and for FN yielded R of 0.97 and AAPE of 8.5%. The validation results showed that R was 0.99 for RF and 0.96 for FN, while the AAPE was 4 and 7.9 % for RF and FN models, respectively. The developed PCA-based RF and FN models provide an accurate UCS estimation in real-time from the drilling data, saving time and cost and enhancing the well stability by generating UCS log from the rig drilling data.


The Bank Marketing data set at Kaggle is mostly used in predicting if bank clients will subscribe a long-term deposit. We believe that this data set could provide more useful information such as predicting whether a bank client could be approved for a loan. This is a critical choice that has to be made by decision makers at the bank. Building a prediction model for such high-stakes decision does not only require high model prediction accuracy, but also needs a reasonable prediction interpretation. In this research, different ensemble machine learning techniques have been deployed such as Bagging and Boosting. Our research results showed that the loan approval prediction model has an accuracy of 83.97%, which is approximately 25% better than most state-of-the-art other loan prediction models found in the literature. As well, the model interpretation efforts done in this research was able to explain a few critical cases that the bank decision makers may encounter; therefore, the high accuracy of the designed models was accompanied with a trust in prediction. We believe that the achieved model accuracy accompanied with the provided interpretation information are vitally needed for decision makers to understand how to maintain balance between security and reliability of their financial lending system, while providing fair credit opportunities to their clients.


Sign in / Sign up

Export Citation Format

Share Document