NUMERICAL TREATMENT OF THIN ACCRETION DISK DYNAMICS AROUND ROTATING BLACK HOLES

2010 ◽  
Vol 19 (13) ◽  
pp. 2111-2133 ◽  
Author(s):  
DENIZ YILDIRAN ◽  
ORHAN DONMEZ

In the present study, we perform the numerical simulation of a relativistic thin accretion disk around the nonrotating and rapidly rotating black holes using the general relativistic hydrodynamic code with Kerr in Kerr–Schild coordinate that describes the central rotating black hole. Since the high energy X-rays are produced close to the event horizon resulting the black hole–disk interaction, this interaction should be modeled in the relativistic region. We have set up two different initial conditions depending on the values of thermodynamical variables around the black hole. In the first setup, the computational domain is filled with constant parameters without injecting gas from the outer boundary. In the second, the computational domain is filled with the matter which is then injected from the outer boundary. The matter is assumed to be at rest far from the black hole. Both cases are modeled over a wide range of initial parameters such as the black hole angular momentum, adiabatic index, Mach number and asymptotic velocity of the fluid. It has been found that initial values and setups play an important role in determining the types of the shock cone and in designating the events on the accretion disk. The continuing injection from the outer boundary presents a tail shock to the steady state accretion disk. The opening angle of shock cone grows as long as the rotation parameter becomes larger. A more compressible fluid (bigger adiabatic index) also presents a bigger opening angle, a spherical shock around the rotating black hole, and less accumulated gas in the computational domain. While results from [J. A. Font, J. M. A. Ibanez and P. Papadopoulos, Mon. Not. R. Astron. Soc.305 (1999) 920] indicate that the tail shock is warped around for the rotating hole, our study shows that it is the case not only for the warped tail shock but also for the spherical and elliptical shocks around the rotating black hole. The warping around the rotating black hole in our case is much smaller than the one by [J. A. Font, J. M. A. Ibanez and P. Papadopoulos, Mon. Not. R. Astron. Soc.305 (1999) 920], due to the representation of results at the different coordinates. Contrary to the nonrotating black hole, the tail shock is slightly warped around the rotating black hole. The filled computational domain without any injection leads to an unstable accretion disk. However much of it reaches a steady state for a short period of time and presents quasi-periodic oscillation (QPO). Furthermore, the disk tends to loose mass during the whole dynamical evolution. The time-variability of these types of accretion flowing close to the black hole may clarify the light curves in Sgr A*.

2014 ◽  
Vol 29 (21) ◽  
pp. 1450115
Author(s):  
Fahrettin Koyuncu ◽  
Orhan Dönmez

We have solved the General Relativistic Hydrodynamic (GRH) equations using the high resolution shock capturing scheme (HRSCS) to find out the dependency of the disk dynamics to the Mach number, adiabatic index, the black hole rotation parameter and the outer boundary of the computational domain around the non-rotating and rotating black holes. We inject the gas to computational domain at upstream and downstream regions at the same time with different initial conditions. It is found that variety of the mass accretion rates and shock cone structures strongly depend on Mach number and adiabatic index of the gas. The shock cones on the accretion disk are important physical mechanisms to trap existing oscillation modes, thereupon these trapped modes may generate strong X-rays observed by different X-ray satellites. Besides, our numerical approach also show that the shock cones produces the flip–flop oscillation around the black holes. The flip–flop instabilities which are monitored in our simulations may explain the erratic spin behavior of the compact objects (the black holes and neutron stars) seen from observed data.


2006 ◽  
Vol 15 (02) ◽  
pp. 171-188 ◽  
Author(s):  
GAUTAM SENGUPTA

A black string generalization of the Myers–Perry N-dimensional rotating black hole is considered in an (N + 1)-dimensional Randall–Sundrum brane world. The black string intercepts the (N - 1) brane in a N-dimensional rotating black hole. We examine the diverse cases arising for various non-zero rotation components and obtain the geodesic equations for these space–times. The causal structure and asymptotics of the resulting brane world geometries are analyzed.


2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Ali Vahedi ◽  
Jafar Khodagholizadeh ◽  
Arman Tursunov

AbstractA non-monotonic behavior of the velocity gradient of a test particle revolving around a rapidly rotating black hole in the locally non-rotating frame of reference is known as the Aschenbach effect. This effect can serve as a distinguishing signature of rapidly rotating black holes, being potentially useful for the measurements of the astrophysical black hole spins. This paper is the generalization of our previous research to the motion of spinning particles around a rotating black hole with non-zero cosmological constant. We show that both the particle’s spin s and the cosmological constant $$\Lambda $$ Λ modify the critical value of the black hole spin $$a_c$$ a c , for which the Aschenbach effect can be observed; $$a_c$$ a c can increase or decrease depending on the signs of s and $$\Lambda $$ Λ . We also found that the particle’s spin s can mimic the effect of the cosmological constant $$\Lambda $$ Λ for a given $$a_c$$ a c , causing thus a discrepancy in the measurements of s, $$\Lambda $$ Λ and $$a_c$$ a c in the Aschenbach effect.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Mohaddese Heydari-Fard ◽  
Malihe Heydari-Fard ◽  
Hamid Reza Sepangi

AbstractRecently, Kumar and Ghosh have derived Kerr-like rotating black hole solutions in the framework of four-dimensional Einstein–Gauss–Bonnet theory of gravity and investigated the black hole shadow. Using the steady-state Novikov–Thorne model, we study thin accretion disk processes for such rotating black holes including the energy flux, temperature distribution, emission spectrum, energy conversion efficiency as well as the radius of the innermost stable circular orbit. We also study the effects of the Gauss–Bonnet coupling parameter $$\alpha $$ α on these quantities. The results are compared to slowly rotating relativistic Kerr black holes which show that for a positive Gauss–Bonnet coupling, thin accretion disks around rotating black holes in four-dimensional Einstein–Gauss–Bonnet gravity are hotter and more efficient than that for Kerr black holes with the same rotation parameter a, while for a negative coupling they are cooler and less efficient. Thus the accretion disk processes may be considered as tools for testing Einstein–Gauss–Bonnet gravity using astrophysical observations.


2015 ◽  
Vol 24 (09) ◽  
pp. 1542007 ◽  
Author(s):  
Hugo R. C. Ferreira

Quantum field theory on rotating black hole spacetimes is plagued with technical difficulties. Here, we describe a general method to renormalize and compute the vacuum polarization of a quantum field in the Hartle–Hawking state on rotating black holes. We exemplify the technique with a massive scalar field on the warped AdS3 black hole solution to topologically massive gravity, a deformation of (2 + 1)-dimensional Einstein gravity. We use a "quasi-Euclidean" technique, which generalizes the Euclidean techniques used for static spacetimes, and we subtract the divergences by matching to a sum over mode solutions on Minkowski spacetime. This allows us, for the first time, to have a general method to compute the renormalized vacuum polarization, for a given quantum state, on a rotating black hole, such as the physically relevant case of the Kerr black hole in four dimensions.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Subhroneel Chakrabarti ◽  
Suresh Govindarajan ◽  
P. Shanmugapriya ◽  
Yogesh K. Srivastava ◽  
Amitabh Virmani

Abstract Although BMPV black holes in flat space and in Taub-NUT space have identical near-horizon geometries, they have different indices from the microscopic analysis. For K3 compactification of type IIB theory, Sen et al. in a series of papers identified that the key to resolving this puzzle is the black hole hair modes: smooth, normalisable, bosonic and fermionic degrees of freedom living outside the horizon. In this paper, we extend their study to N = 4 CHL orbifold models. For these models, the puzzle is more challenging due to the presence of the twisted sectors. We identify hair modes in the untwisted as well as twisted sectors. We show that after removing the contributions of the hair modes from the microscopic partition functions, the 4d and 5d horizon partition functions agree. Special care is taken to present details on the smoothness analysis of hair modes for rotating black holes, thereby filling an essential gap in the literature.


1998 ◽  
Vol 188 ◽  
pp. 409-410
Author(s):  
A. Maciołek-Niedźwiecki ◽  
P. Magdziarz

We study the spectra arising from Compton reflection in the innermost parts of the accretion disk. We emphasize that the so far neglected relativistic distortion of the Compton reflection continuum may strongly affect the derived Fe Kα line shapes.


2020 ◽  
Vol 35 (02n03) ◽  
pp. 2040054
Author(s):  
M. Yu. Piotrovich ◽  
V. L. Afanasiev ◽  
S. D. Buliga ◽  
T. M. Natsvlishvili

Based on spectropolarimetry for a number of active galactic nuclei in Seyfert 1 type galaxies observed with the 6-m BTA telescope, we have estimated the spins of the supermassive black holes at the centers of these galaxies. We have determined the spins based on the standard Shakura-Sunyaev accretion disk model. More than 70% of the investigated active galactic nuclei are shown to have Kerr supermassive black holes with a dimensionless spin greater than 0.9.


2019 ◽  
Vol 28 (08) ◽  
pp. 1950102
Author(s):  
Muhammad Rizwan ◽  
Khalil Ur Rehman

By considering the quantum gravity effects based on generalized uncertainty principle, we give a correction to Hawking radiation of charged fermions from accelerating and rotating black holes. Using Hamilton–Jacobi approach, we calculate the corrected tunneling probability and the Hawking temperature. The quantum corrected Hawking temperature depends on the black hole parameters as well as quantum number of emitted particles. It is also seen that a remnant is formed during the black hole evaporation. In addition, the corrected temperature is independent of an angle [Formula: see text] which contradicts the claim made in the literature.


Sign in / Sign up

Export Citation Format

Share Document