scholarly journals Deformed compact extra space as dark matter candidate

Author(s):  
Vakhid A. Gani ◽  
Alexander E. Dmitriev ◽  
Sergey G. Rubin

We elaborate the possibility for a deformed extra space to be considered as the dark matter candidate. To perform calculations, a class of two-dimensional extra metrics was considered in the framework of the multidimensional gravity. It was shown that there exists a family of stationary metrics of the extra space possessing point-like defect. Estimation of cross-section of scattering of a particle of the ordinary matter on a spatial domain with deformed extra space is in agreement with the observational constraints.

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Seraina Glaus ◽  
Margarete Mühlleitner ◽  
Jonas Müller ◽  
Shruti Patel ◽  
Tizian Römer ◽  
...  

Abstract Having so far only indirect evidence for the existence of Dark Matter a plethora of experiments aims at direct detection of Dark Matter through the scattering of Dark Matter particles off atomic nuclei. For the correct interpretation and identification of the underlying nature of the Dark Matter constituents higher-order corrections to the cross section of Dark Matter-nucleon scattering are important, in particular in models where the tree-level cross section is negligibly small. In this work we revisit the electroweak corrections to the dark matter-nucleon scattering cross section in a model with a pseudo Nambu-Goldstone boson as the Dark Matter candidate. Two calculations that already exist in the literature, apply different approaches resulting in different final results for the cross section in some regions of the parameter space leading us to redo the calculation and analyse the two approaches to clarify the situation. We furthermore update the experimental constraints and examine the regions of the parameter space where the cross section is above the neutrino floor but which can only be probed in the far future.


2007 ◽  
Vol 22 (13) ◽  
pp. 931-937 ◽  
Author(s):  
P. H. FRAMPTON

Abelian quiver gauge theories provide candidates for the conformality approach to physics beyond the standard model which possess novel cancellation mechanisms for quadratic divergences. A Z2 symmetry ( R parity) can be imposed and leads naturally to a dark matter candidate which is the Lightest Conformality Particle (LCP), a neutral spin-1 / 2 state with weak interaction annihilation cross-section, mass in the 100 GeV region and relic density of non-baryonic dark matter Ωdm which can be consistent with the observed value Ωdm≃0.24.


2019 ◽  
Vol 74 (5) ◽  
pp. 387-446
Author(s):  
Jochem Hauser ◽  
Walter Dröscher

AbstractThis article attempts to explain the underlying physics of several recent experiments and astrophysical observations that have been mystifying the physics community for quite some time. So far, none of the advanced theories beyond the standard models of particle physics and cosmology have shown sufficient potential to resolve these mysteries. The reason for this failure may lie in the fact that these theories are based on the concept of extra space dimensions that appears to be in conflict with numerous experiments, in particular with recent Large Hadron Collider data. Therefore, the novel idea of extra number systems is introduced, replacing the idea of extra space dimensions. This approach is complemented by a set of fundamental physical principles that provide the constraints and guidelines for a modified physical formulation in agreement with known experimental reality. However, such a theory requires novel physical concepts in conjunction with novel symmetry groups. These groups give rise to additional types of matter, termed hypercomplex masses (which are responsible for the extreme hypercomplex gravitational fields, see below, and are also denoted as matter flavour), including, for instance, particles of negative mass, identified with dark matter. Furthermore, four-dimensional Minkowski spacetime, assumed to be a quasi de Sitter space $dS^{1,3}$dual spacetime, $DdS^{1,3}$, with imaginary time coordinate; that is, time is a complex quantity. The three spatial coordinates are shared by the two spacetimes. Dark matter is assumed to reside in $DdS^{1,3}$ and therefore is principally invisible. On the other hand, its gravitational interaction with ordinary matter (m ≥ 0) in spacetime $dS^{1,3}$ is directly perceptible. The novel group structure predicts the existence of a fourth particle family of negative masses; that is, besides the dark matter particle χ of mass $m_{\chi}\approx-80.77$ GeV/c2, there is the dark neutrino νχ of mass $m_{\nu_{\chi}}\approx-3.23$ eV/c2. Moreover, the hypercomplex group structure of gravity ($SU(2)\times SU(2)$) postulates three gravitational bosons for cosmological fields [resulting from Einstein’s theory of general relativity (GR)], the graviton $\nu_{G_{N}}$ with spin 2, the novel gravitophoton $\nu_{gp}$ with spin 1 (existence of weak gravitomagnetic fields of GR), and the quintessence particle νq with spin 0, which, when present, mediates an interaction between ordinary matter (m ≥ 0) and the ubiquitous scalar field of dark energy. In addition, the existence of extreme gravity fields (hypercomplex gravity) is postulated, based on the second group SU(2), and an interaction between electromagnetism and hypercomplex gravity is predicted, mediated by three additional hypercomplex-gravity bosons. Some long-standing problems of cosmology will be addressed; namely, the Big Bang scenario and the origin of dark energy and the nature of dark matter and their relation to the modified Newtonian dynamics hypothesis will be discussed.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 991
Author(s):  
Jan Kalinowski ◽  
Tania Robens ◽  
Dorota Sokołowska ◽  
Aleksander Filip Żarnecki

We present cross-section expectations for various processes and collider options, for benchmark scenarios of the Inert Doublet Model, a Two Higgs Doublet Model with a dark matter candidate. The proposed scenarios are consistent with current dark matter constraints, including the most recent bounds from the XENON1T experiment and relic density, as well as with known collider and low-energy limits. These benchmarks, chosen in earlier work for studies at e+e− colliders, exhibit a variety of kinematic features that should be explored at current and future runs of the LHC. We provide cross sections for all relevant production processes at 13 TeV, 27 TeV and 100 TeV proton collider, as well as for a possible 10 TeV and 30 TeV muon collider.


2018 ◽  
Vol 33 (07) ◽  
pp. 1850035
Author(s):  
Bin Zhu ◽  
Ran Ding ◽  
Tianjun Li

In this paper, we propose a hybrid mediation and hybrid supersymmetry breaking. In particular, the RG-invariant anomaly mediation is considered. Together with additional gravity mediation, the slepton tachyon problem of anomaly mediation is solved automatically. The special properties are that all color sparticles masses fall into several TeV regions due to the large [Formula: see text] and [Formula: see text] which are well beyond the scope of current LHC Run II limits. Unlike the gauge mediation, the dark matter candidate is still the lightest neutralino and the correct dark matter relic density can be realized within the framework of mixed axion-Wino dark matter. Due to the existence of multi-component axion-Wino dark matter, the direct detection cross-section is suppressed to evade the tightest LUX, PandaX bound.


2015 ◽  
Vol 30 (15) ◽  
pp. 1530041 ◽  
Author(s):  
Eung Jin Chun

In a supersymmetric U(1)′ seesaw model, a right-handed sneutrino can be a good thermal dark matter candidate if the extra gaugino [Formula: see text] is light enough to provide an appropriate annihilation cross-section through a t-channel diagram. We first discuss how right thermal relic density of the right-handed sneutrino dark matter can arise and then explore lepton number and flavor violating signatures followed by cascade production of [Formula: see text] from the third generation squarks at the LHC.


1977 ◽  
Vol 12 (1) ◽  
pp. 233-255
Author(s):  
J.F. Sykes ◽  
A.J. Crutcher

Abstract A two-dimensional Galerkin finite element model for flow and contaminant transport in variably saturated porous media is used to analyze the transport of chlorides from a sanitary landfill located in Southern Ontario. A representative cross-section is selected for the analysis. Predicted chloride concentrations are presented for the cross section at various horizon years.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
H. Hernández-Arellano ◽  
M. Napsuciale ◽  
S. Rodríguez

Abstract In this work we study the possibility that the gamma ray excess (GRE) at the Milky Way galactic center come from the annihilation of dark matter with a (1, 0) ⊕ (0, 1) space-time structure (spin-one dark matter, SODM). We calculate the production of prompt photons from initial state radiation, internal bremsstrahlung, final state radiation including the emission from the decay products of the μ, τ or hadronization of quarks. Next we study the delayed photon emission from the inverse Compton scattering (ICS) of electrons (produced directly or in the prompt decay of μ, τ leptons or in the hadronization of quarks produced in the annihilation of SODM) with the cosmic microwave background or starlight. All these mechanisms yield significant contributions only for Higgs resonant exchange, i.e. for M ≈ MH /2, and the results depend on the Higgs scalar coupling to SODM, gs. The dominant mechanism at the GRE bump is the prompt photon production in the hadronization of b quarks produced in $$ \overline{D}D\to \overline{b}b $$ D ¯ D → b ¯ b , whereas the delayed photon emission from the ICS of electrons coming from the hadronization of b quarks produced in the same reaction dominates at low energies (ω < 0.3 GeV ) and prompt photons from c and τ , as well as from internal bremsstrahlung, yield competitive contributions at the end point of the spectrum (ω ≥ 30 GeV ). Taking into account all these contributions, our results for photons produced in the annihilation of SODM are in good agreement with the GRE data for gs ∈ [0.98, 1.01] × 10−3 and M ∈ [62.470, 62.505] GeV . We study the consistency of the corresponding results for the dark matter relic density, the spin-independent dark matter-nucleon cross-section σp and the cross section for the annihilation of dark matter into $$ \overline{b}b $$ b ¯ b , τ+τ−, μ+μ− and γγ, taking into account the Higgs resonance effects, finding consistent results in all cases.


Sign in / Sign up

Export Citation Format

Share Document