No-scale supergravity inflation: A bridge between string theory and particle physics?

2016 ◽  
Vol 25 (14) ◽  
pp. 1630027 ◽  
Author(s):  
John Ellis

The plethora of recent and forthcoming data on the cosmic microwave background (CMB) data are stimulating a new wave of inflationary model-building. Naturalness suggests that the appropriate framework for models of inflation is supersymmetry. This should be combined with gravity in a supergravity theory, whose specific no-scale version has much to commend it, e.g. its derivation from string theory and the flat directions in its effective potential. Simple no-scale supergravity models yield predictions similar to those of the Starobinsky [Formula: see text] model, though some string-motivated versions make alternative predictions. Data are beginning to provide interesting constraints on the rate of inflaton decay into Standard Model particles. In parallel, LHC and other data provide significant constraints on no-scale supergravity models, which suggest that some sparticles might have masses close to present experimental limits.

2015 ◽  
Vol 30 (10) ◽  
pp. 1530008 ◽  
Author(s):  
Hans Peter Nilles ◽  
Patrick K. S. Vaudrevange

String theoretical ideas might be relevant for particle physics model building. Ideally one would hope to find a unified theory of all fundamental interactions. There are only a few consistent string theories in D = 10 or 11 spacetime dimensions, but a huge landscape in D = 4. We have to explore this landscape to identify models that describe the known phenomena of particle physics. Properties of compactified six spatial dimensions are crucial in that respect. We postulate some useful rules to investigate this landscape and construct realistic models. We identify common properties of the successful models and formulate lessons for further model building.


2013 ◽  
Vol 28 (05n06) ◽  
pp. 1330005 ◽  
Author(s):  
ANSHUMAN MAHARANA ◽  
ERAN PALTI

We review particle physics model building in type IIB string theory and F-theory. This is a region in the landscape where in principle many of the key ingredients required for a realistic model of particle physics can be combined successfully. We begin by reviewing moduli stabilization within this framework and its implications for supersymmetry breaking. We then review model building tools and developments in the weakly coupled type IIB limit, for both local D3-branes at singularities and global models of intersecting D7-branes. Much of recent model building work has been in the strongly coupled regime of F-theory due to the presence of exceptional symmetries which allow for the construction of phenomenologically appealing Grand Unified Theories. We review both local and global F-theory model building starting from the fundamental concepts and tools regarding how the gauge group, matter sector and operators arise, and ranging to detailed phenomenological properties explored in the literature.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Magdalena Larfors ◽  
Davide Passaro ◽  
Robin Schneider

Abstract The systematic program of heterotic line bundle model building has resulted in a wealth of standard-like models (SLM) for particle physics. In this paper, we continue this work in the setting of generalised Complete Intersection Calabi Yau (gCICY) manifolds. Using the gCICYs constructed in ref. [1], we identify two geometries that, when combined with line bundle sums, are directly suitable for heterotic GUT models. We then show that these gCICYs admit freely acting ℤ2 symmetry groups, and are thus amenable to Wilson line breaking of the GUT gauge group to that of the standard model. We proceed to a systematic scan over line bundle sums over these geometries, that result in 99 and 33 SLMs, respectively. For the first class of models, our results may be compared to line bundle models on homotopically equivalent Complete Intersection Calabi Yau manifolds. This shows that the number of realistic configurations is of the same order of magnitude.


2021 ◽  
Author(s):  
Andrey Chernov

Abstract In this study, a new concept is introduced - gravitational cells. The body of a black hole consists of a huge number of such cells. This hypothesis from particle physics has been organically built into string theory. As a result, using the formula for the Schwarzschild radius and the Coulomb formula, a formula was obtained to determine the gravitational constant in the region of black holes and its value was determined. The value of the usual gravitational constant has been confirmed. Also, a new physical constant was obtained - the mass of the gravitational cell of a black hole. The introduction of the hypothesis of gravitational cells into string theory allowed us to apply Planck's formula to gravitational interaction. As a result, the formula for the quantum of the gravitational field was obtained and the frequency of vibrations of gravitational strings was calculated. Based on this, a formula was obtained to determine the mass of an electron. The electron mass calculated by the new formula coincided with the known experimental value. In this work, it was also proved that the vibration frequency of gravitational strings is directly proportional to the ratio of the mass of an electron and a proton inside the gravitational cell (and inside the atom). The formula for the dependence of the gravitational constant on the magnitude of the electron mass was obtained and confirming calculations were made.


2021 ◽  
Vol 2105 (1) ◽  
pp. 012002
Author(s):  
Pascal Anastasopoulos

Abstract The present research proceeding aims at investigating/exploring/sharpening the phenomenological consequences of string theory and holography in particle physics and cosmology. We rely on and elaborate on the recently proposed framework whereby four-dimensional quantum field theories describe all interactions in Nature, and gravity is an emergent and not a fundamental force. New gauge fields, axions, and fermions, which can play the role of right-handed neutrinos, can also emerge in this framework. Preprint: UWThPh 2021-8


Author(s):  
Mairi Sakellariadou

Cosmic superstrings are expected to be formed at the end of brane inflation, within the context of brane-world cosmological models inspired from string theory. By studying the properties of cosmic superstring networks and comparing their phenomenological consequences against observational data, we aim to pin down the successful and natural inflationary model and get an insight into the stringy description of our Universe.


Sign in / Sign up

Export Citation Format

Share Document