scholarly journals New insights into quantum gravity from gauge/gravity duality

2016 ◽  
Vol 25 (12) ◽  
pp. 1643002 ◽  
Author(s):  
Netta Engelhardt ◽  
Gary T. Horowitz

Using gauge/gravity duality, we deduce several nontrivial consequences of quantum gravity from simple properties of the dual field theory. These include: (1) a version of cosmic censorship, (2) restrictions on evolution through black hole singularities, and (3) the exclusion of certain cosmological bounces. In the classical limit, the latter implies a new singularity theorem.

2014 ◽  
Vol 23 (12) ◽  
pp. 1442009 ◽  
Author(s):  
Mukund Rangamani ◽  
Massimilliano Rota

The black hole final state proposal implements manifest unitarity in the process of black hole formation and evaporation in quantum gravity, by postulating a unique final state boundary condition at the singularity. We argue that this proposal can be embedded in the gauge/gravity context by invoking a path integral formalism inspired by the Schwinger–Keldysh like thermo-field double construction in the dual field theory. This allows us to realize the gravitational quantum channels for information retrieval to specific deformations of the field theory path integrals and opens up new connections between geometry and information theory.


2008 ◽  
Vol 23 (14n15) ◽  
pp. 2161-2164 ◽  
Author(s):  
JUN NISHIMURA

We perform a direct test of the gauge/gravity duality by studying one-dimensional U (N) gauge theory with 16 supercharges at finite temperature using Monte Carlo simulation. In the 't Hooft large-N limit and in the strong coupling limit, the model is expected to have a dual gravity description in terms of the near-extremal black 0-brane solution in ten-dimensional type IIA supergravity. Our results provide the first example, in which the microscopic origin of the black hole thermodynamics is accounted for by solving explicitly the strongly coupled dynamics of the open strings attached to the D-branes.


2018 ◽  
Vol 175 ◽  
pp. 08004 ◽  
Author(s):  
Raghav G. Jha ◽  
Simon Catterall ◽  
David Schaich ◽  
Toby Wiseman

The lattice studies of maximally supersymmetric Yang-Mills (MSYM) theory at strong coupling and large N is important for verifying gauge/gravity duality. Due to the progress made in the last decade, based on ideas from topological twisting and orbifolding, it is now possible to study these theories on the lattice while preserving an exact supersymmetry on the lattice. We present some results from the lattice studies of two-dimensional MSYM which is related to Type II supergravity. Our results agree with the thermodynamics of different black hole phases on the gravity side and the phase transition (Gregory–Laflamme) between them.


2020 ◽  
Vol 9 (3) ◽  
Author(s):  
Daniel Arean ◽  
Karl Landsteiner ◽  
Ignacio Salazar Landea

Quantum theory can be formulated with certain non-Hermitian Hamiltonians. An anti-linear involution, denoted by PT, is a symmetry of such Hamiltonians. In the PT-symmetric regime the non-Hermitian Hamiltonian is related to a Hermitian one by a Hermitian similarity transformation. We extend the concept of non-Hermitian quantum theory to gauge-gravity duality. Non-Hermiticity is introduced via boundary conditions in asymptotically AdS spacetimes. At zero temperature the PT phase transition is identified as the point at which the solutions cease to be real. Surprisingly at finite temperature real black hole solutions can be found well outside the quasi-Hermitian regime. These backgrounds are however unstable to fluctuations which establishes the persistence of the holographic dual of the PT phase transition at finite temperature.


2010 ◽  
Vol 25 (34) ◽  
pp. 2859-2872 ◽  
Author(s):  
SPENTA R. WADIA

We discuss the AdS/CFT correspondence in which spacetime emerges from an interacting theory of D-branes and open strings. These ideas have a historical continuity with QCD which is an interacting theory of quarks and gluons. In particular, we review the classic case of D3 branes and the non-conformal D1 brane system. We outline by some illustrative examples the calculations that are enabled in a strongly coupled gauge theory by correspondence with dynamical horizons in semiclassical gravity in one higher dimension. We also discuss implications of the gauge fluid/gravity correspondence for the information paradox of black hole physics.


2009 ◽  
Vol 24 (18n19) ◽  
pp. 3584-3591 ◽  
Author(s):  
I. P. NEUPANE

The gauge theory - gravity duality has provided us a way of studying QCD at high energies or short distances from straightforward calculations in classical general relativity. Among numerous results obtained so far, one of the most striking is the universality of the ratio of the shear viscosity to the entropy density. For all gauge theories with Einstein gravity dual this ratio has been found to be η/s = 1/4π. In this note, we consider higher curvature-corrected black hole solutions for which η/s can be smaller than 1/4π, thus violating the conjecture bound. Here we shall argue that the Gauss-Bonnet gravity and (Riemann)2 gravity theories, in particular, provide concrete examples in which inconsistency of a theory, such as a violation of microcausality at short distances, and a classical limit on black hole entropy are correlated.


2008 ◽  
Vol 17 (03n04) ◽  
pp. 583-589 ◽  
Author(s):  
SAMIR D. MATHUR

String theory tells us that quantum gravity has a dual description as a field theory (without gravity). We use the field theory dual to ask what happens to an object as it falls into the simplest black hole: the two-charge extremal hole. In the field theory description the wave function of a particle is spread over a large number of "loops," and the particle has a well-defined position in space only if it has the same "position" on each loop. For the infalling particle we find one definition of "same position" on each loop, but there is a different definition for outgoing particles and no canonical definition in general in the horizon region. Thus the meaning of "position" becomes ill-defined inside the horizon.


2017 ◽  
Vol 32 (36) ◽  
pp. 1747018 ◽  
Author(s):  
Daisuke Kadoh

The duality conjecture states that [Formula: see text]-dimensional maximally supersymmetric Yang–Mills theory at finite temperature is expected to be dual to the non extremal black [Formula: see text]-brane at large N. We perform the lattice simulations of SYM for [Formula: see text] to investigate the validity of the conjecture. We show that the conjecture is qualitatively valid by comparing lattice results of the black [Formula: see text]-branes mass with analytic expectations in the gravity side.


Sign in / Sign up

Export Citation Format

Share Document