Role of collisional matter in the framework of extended teleparallel theory

2020 ◽  
Vol 29 (15) ◽  
pp. 2050099
Author(s):  
Muhammad Zeeshan ◽  
M. Zubair ◽  
Rabia Saleem

The purpose of this work is to examine the cosmic evolution in the presence of collisional matter (CM) with and without radiations in a modified Teleparallel theory involving a generic function [Formula: see text] which depends on the scalar torsion [Formula: see text] and the boundary term associated to the divergence of torsion [Formula: see text]. We select seven novel [Formula: see text] models including power law, logarithmic models and exponential models, some of these reported in [S. Bahamonde, M. Zubair and G. Abbas, Phys. Dark Univ. 19 (2018) 78; S. Bahamonde and S. Capozziello, The Eur. Phys. J. C. 77 (2017) 107; C. Escamilla-Rivera and J. L. Said, Class. Quantum Grav. 37 (2020) 165002] and discuss the evolutionary scenario. The behavior of deceleration parameter [Formula: see text], Hubble parameter [Formula: see text], Equation-of-state (EoS) for dark energy (DE) and effective EoS is presented. [Formula: see text]CDM epoch and crossing of phantom divide line (approaching to phantom era) is observed in scenarios like noncollisional matter (NCM) with radiation, CM with and without radiation. Results are found to be adequate with recent cosmic observations.

2013 ◽  
Vol 28 (27) ◽  
pp. 1350118 ◽  
Author(s):  
M. SHARIF ◽  
SHAMAILA RANI

We study the bulk viscosity taking dust matter in the generalized teleparallel gravity. We consider different dark energy (DE) models in this scenario along with a time-dependent viscous model to construct the viscous equation of state (EoS) parameter for these DE models. We discuss the graphical representation of this parameter to investigate the viscosity effects on the accelerating expansion of the universe. It is mentioned here that the behavior of the universe depends upon the viscous coefficients showing the transition from decelerating to accelerating phase. It leads to the crossing of phantom divide line and becomes phantom dominated for specific ranges of these coefficients.


2018 ◽  
Vol 15 (04) ◽  
pp. 1850067 ◽  
Author(s):  
Shamaila Rani ◽  
Abdul Jawad

We consider the recently proposed higher derivative torsion corrected modified teleparallel gravity and holographic dark energy (HDE) models. We apply the correspondence scheme to construct models in underlying scenario using various scale factor forms. We investigate the reconstructed functions through equation of state (EoS) parameter. It is demonstrated that the EoS parameter provides quintom-like nature of the Universe in most of the cases, i.e. it drives the Universe from vacuum dark energy era toward phantom era of the Universe by crossing the phantom divide line. We also demonstrate that the consistency with the observational data can be achieved.


2016 ◽  
Vol 25 (05) ◽  
pp. 1650057 ◽  
Author(s):  
M. Zubair

We study the late-time cosmological evolution of [Formula: see text] (where [Formula: see text] is the torsion scalar) theories with matter contents consisting of collisional self-interacting matter and radiations. The power law, exponential and logarithmic [Formula: see text] models are considered to explore the evolution of Hubble parameter [Formula: see text], dark energy (DE) equation of state (EoS) [Formula: see text] and effective EoS parameter [Formula: see text]. We show that crossing of phantom divide line can be realized in the presence of collisional matter as compared to the results obtained for the choice of noncollisional matter [K. Bamba, C.-Q. Geng, C.-C. Lee and L.-W. Luo, J. Cosmol. Astropart. Phys. 01 (2011) 021; K. Bamba, C.-Q. Geng and C.-C. Lee, arXiv:1008.4036]. The evolutionary behavior of [Formula: see text] is consistent with the one developed in [P. Wu and H. Yu, Eur. Phys. J. C 71 (2011) 1552] and recent observational data [U. Alam, V. Sahni and A. A. Starobinsky, J. Cosmol. Astropart. Phys. 0406 (2004) 008; S. Nesseris and L. Perivolaropoulos, J. Cosmol. Astropart. Phys. 0701 (2007) 018; P. Wu and H. Yu, Phys. Lett. B 643 (2006) 315; U. Alam, V. Sahni and A. A. Starobinsky, J. Cosmol. Astropart. Phys. 0702 (2007) 011; H. K. Jassal, J. S. Bagla and T. Padmanabhan, Mon. Not. R. Astron. Soc. 405 (2010) 2639].


2009 ◽  
Vol 24 (07) ◽  
pp. 541-555 ◽  
Author(s):  
HONGSHENG ZHANG ◽  
ZONG-HONG ZHU ◽  
LIHUA YANG

Hybrid Chaplygin gas model is put forward, in which the gases play the role of dark energy. For this model the coincidence problem is greatly alleviated. The effective equation of state of the dark energy may cross the phantom divide w = -1. Furthermore, the crossing behavior is decoupled from any gravity theories. In the present model, w < -1 is only a transient behavior. There is a de Sitter attractor in the future infinity. Hence, the big rip singularity, which often afflicts the models with matter whose effective equation of state less than -1, naturally disappears. There exist stable scaling solutions, both at the early universe and the late universe. We discuss the perturbation growth of this model. We find that the index is consistent with observations.


2012 ◽  
Vol 21 (06) ◽  
pp. 1250057 ◽  
Author(s):  
KH. SAAIDI ◽  
A. AGHAMOHAMMADI ◽  
B. SABET ◽  
O. FAROOQ

We study a correspondence between f(R) model of gravity in the Jordan frame and a phenomenological kind of dark energy (DE), which is known as QCD ghost DE. Since this kind of DE is not stable in the context of Einsteinian theory of gravity and Brans–Dicke model of gravity, we consider two kinds of correspondence between modified gravity and DE. By studding the dynamical evolution of model and finding relevant quantities such as, equation of state parameter, deceleration parameter, dimensionless density parameter, we show that the model can describe the present Universe and also the EoS parameter can cross the phantom divide line without needs to any kinetic energy with negative sign. Furthermore, by obtaining the adiabatic squared sound speed of the model for different cases of interaction, we show that this model is stable. Finally, we fit this model with supernova observational data in a noninteraction case and we find the best values of parameter at 1σ confidence interval as; [Formula: see text], [Formula: see text] and [Formula: see text]. These best-fit values show that DE equation of state parameter, ωd0, can cross the phantom divide line at the present time.


2013 ◽  
Vol 22 (06) ◽  
pp. 1350023 ◽  
Author(s):  
KAZUHARU BAMBA ◽  
OLGA RAZINA ◽  
KOBLANDY YERZHANOV ◽  
RATBAY MYRZAKULOV

We explore the cosmological evolution of equation of state (EoS) for dark energy in g-essence models, the action of which is described by a function of both the canonical kinetic term of both the scalar and fermionic fields. We examine g-essence models with realizing the crossing of the phantom divide line of w DE = -1 as well as the models in which the universe always stays in the nonphantom (quintessence) phase (w DE > -1). In particular, we find an explicit g-essence model with the crossing from the nonphantom phase to the phantom one (w DE < -1). This transition behavior is consistent with the recent observational data analyses.


2013 ◽  
Vol 28 (38) ◽  
pp. 1350180 ◽  
Author(s):  
M. SHARIF ◽  
ABDUL JAWAD

In this paper, we consider the interacting generalized dark energy with cold dark matter and analyze the behavior of evolution parameter via dark energy and interacting parameters. It is found that the evolution parameter crosses the phantom divide line in most of the cases of integration constants. We also establish the correspondence of scalar field models (quintessence, k-essence and dilaton) with this dark energy model in which scalar fields show the increasing behavior. The scalar potential corresponds to attractor solutions in quintessence case.


Author(s):  
T. Vinutha ◽  
V.U.M. Rao ◽  
Molla Mengesha

The present study deals with a spatially homogeneous locally rotationally symmetric (LRS) Bianchi type-I dark energy cosmological model containing one dimensional cosmic string fluid source. The Einstein's field equations are solved by using a relation between the metric potentials and hybrid expansion law of average scale factor. We discuss accelerated expansion of our model through equation of state (ωde) and deceleration parameter (q). We observe that in the evolution of our model, the equation of state parameter starts from matter dominated phase ωde > -1/3 and ultimately attains a constant value in quintessence region (-1 < ωde < -1/3). The EoS parameter of the model never crosses the phantom divide line (ωde = 1). These facts are consistent with recent observations. We also discuss some other physical parameters.


Sign in / Sign up

Export Citation Format

Share Document