scholarly journals EXOTIC PHYSICS AT THE LHC WITH CASTOR IN CMS

2007 ◽  
Vol 16 (07n08) ◽  
pp. 2451-2456 ◽  
Author(s):  
◽  
EDWIN NORBECK ◽  
YASAR ONEL ◽  
EWA GŁADYSZ-DZIADUŚ ◽  
APOSTOLOS D. PANAGIOTOU ◽  
...  

Cosmic-rays sometimes produce showers of unusual composition that contain particles with energy-loss profiles different from all known particles. The Large Hadron Collider (LHC) will produce, for the first time, nuclear collisions at the extremely high energy characteristic of the cosmic-ray events. The CASTOR detector, a part of the huge CMS experiment, is designed for detailed studies of the products corresponding to the cores of cosmic-ray showers. It will cover angles of 0.1° to 0.7° from the beam. It will be divided azimuthally into 16 segments and longitudinally into 18 segments. It is assumed that cosmic ray showers are caused by nuclei, protons through iron, hitting the atmosphere. If CASTOR does not find events that can be identified with the anomalous cosmic-ray events, this assumption may need to be reconsidered. Pb - Pb collisions with the LHC will have an energy 28 times that of Au - Au collisions studied at RHIC. With this huge increase in energy a wealth of new phenomena is almost assured. Because of the much larger mass number, Pb - Pb events can be expected to show exotic phenomena that is beyond the reach of cosmic rays.

Open Physics ◽  
2012 ◽  
Vol 10 (4) ◽  
Author(s):  
Janusz Kempa ◽  
Bryan Pattison ◽  
Ewa Gładysz-Dziaduś ◽  
Lawrence Jones ◽  
Rauf Mukhamedshin ◽  
...  

AbstractThe cosmic ray emulsion chamber community has reported several unusual phenomena which are also relevant to experiments at the current high-energy accelerators, in particular the Fermilab Tevatron Collider and the CERN Large Hadron Collider (LHC). A summary of the ”Cosmic Rays at Mountain Altitude” workshop held at Plock (Poland, September 2010) is given.


2019 ◽  
Vol 5 (9) ◽  
pp. eaax3793 ◽  
Author(s):  
◽  
Q. An ◽  
R. Asfandiyarov ◽  
P. Azzarello ◽  
P. Bernardini ◽  
...  

The precise measurement of the spectrum of protons, the most abundant component of the cosmic radiation, is necessary to understand the source and acceleration of cosmic rays in the Milky Way. This work reports the measurement of the cosmic ray proton fluxes with kinetic energies from 40 GeV to 100 TeV, with 2 1/2 years of data recorded by the DArk Matter Particle Explorer (DAMPE). This is the first time that an experiment directly measures the cosmic ray protons up to ~100 TeV with high statistics. The measured spectrum confirms the spectral hardening at ~300 GeV found by previous experiments and reveals a softening at ~13.6 TeV, with the spectral index changing from ~2.60 to ~2.85. Our result suggests the existence of a new spectral feature of cosmic rays at energies lower than the so-called knee and sheds new light on the origin of Galactic cosmic rays.


2019 ◽  
Vol 210 ◽  
pp. 02001
Author(s):  
Sergey Ostapchenko

The differences between contemporary Monte Carlo generators of high energy hadronic interactions are discussed and their impact on the interpretation of experimental data on ultra-high energy cosmic rays (UHECRs) is studied. Key directions for further model improvements are outlined. The prospect for a coherent interpretation of the data in terms of the UHECR composition is investigated.


2020 ◽  
Vol 493 (4) ◽  
pp. 5323-5335 ◽  
Author(s):  
Philipp Kempski ◽  
Eliot Quataert ◽  
Jonathan Squire

ABSTRACT Weakly collisional, magnetized plasmas characterized by anisotropic viscosity and conduction are ubiquitous in galaxies, haloes, and the intracluster medium (ICM). Cosmic rays (CRs) play an important role in these environments as well, by providing additional pressure and heating to the thermal plasma. We carry out a linear stability analysis of weakly collisional plasmas with CRs using Braginskii MHD for the thermal gas. We assume that the CRs stream at the Alfvén speed, which in a weakly collisional plasma depends on the pressure anisotropy (Δp) of the thermal plasma. We find that this Δp dependence introduces a phase shift between the CR-pressure and gas-density fluctuations. This drives a fast-growing acoustic instability: CRs offset the damping of acoustic waves by anisotropic viscosity and give rise to wave growth when the ratio of CR pressure to gas pressure is ≳αβ−1/2, where β is the ratio of thermal to magnetic pressure, and α, typically ≲1, depends on other dimensionless parameters. In high-β environments like the ICM, this condition is satisfied for small CR pressures. We speculate that the instability studied here may contribute to the scattering of high-energy CRs and to the excitation of sound waves in galaxy-halo, group and cluster plasmas, including the long-wavelength X-ray fluctuations in Chandra observations of the Perseus cluster. It may also be important in the vicinity of shocks in dilute plasmas (e.g. cluster virial shocks or galactic wind termination shocks), where the CR pressure is locally enhanced.


1990 ◽  
Vol 123 ◽  
pp. 537-541
Author(s):  
Carl E. Fichtel ◽  
Mehmet E. Ozel ◽  
Robert G. Stone

AbstractPresent and future measurement of the Large Magellanic Cloud (LMC) particularly in the radio and high energy gamma ray range offer the possibility of understanding the density and distribution of the cosmic rays in a galaxy other than our own and the role that they play in galactic dynamic balance. After a study of the consistency of the measurements and interpretation of the synchrotron radiation from our own galaxy, the cosmic ray distribution for the LMC is calculated under the assumption that the cosmic ray nucleon to electron ratio is the same and the relation to the magnetic fields are the same, although the implications of alternatives are discussed. It is seen that the cosmic ray density level appears to be similar to that in our own galaxy, but varying in position in a manner generally consistent with the concept of correlation with the matter on a broad scale.


2019 ◽  
Vol 488 (1) ◽  
pp. L119-L122 ◽  
Author(s):  
David Wittkowski ◽  
Karl-Heinz Kampert

ABSTRACT Cosmogenic neutrinos originate from interactions of cosmic rays propagating through the universe with cosmic background photons. Since both high-energy cosmic rays and cosmic background photons exist, the existence of high-energy cosmogenic neutrinos is certain. However, their flux has not been measured so far. Therefore, we calculated the flux of high-energy cosmogenic neutrinos arriving at the Earth on the basis of elaborate 4D simulations that take into account three spatial degrees of freedom and the cosmological time-evolution of the universe. Our predictions for this neutrino flux are consistent with the recent upper limits obtained from large-scale cosmic-ray experiments. We also show that the extragalactic magnetic field has a strong influence on the neutrino flux. The results of this work are important for the design of future neutrino observatories, since they allow to assess the detector volume and observation time that are necessary to detect high-energy cosmogenic neutrinos in the near future. An observation of such neutrinos would push multimessenger astronomy to hitherto unachieved energy scales.


2019 ◽  
Vol 210 ◽  
pp. 02015
Author(s):  
Sofia Andringa ◽  

The average profiles of cosmic ray shower development as a function of atmospheric depth are measured for the first time with the Fluorescence Detectors at the Pierre Auger Observatory. The profile shapes are well reproduced by the Gaisser-Hillas parametrization at the 1% level in a 500 g/cm2 interval around the shower maximum, for cosmic rays with log(E/eV) > 17.8. The results are quantified with two shape parameters, measured as a function of energy. The average profiles carry information on the primary cosmic ray and its high energy hadronic interactions. The shape parameters predicted by the commonly used models are compatible with the measured ones within experimental uncertainties. Those uncertainties are dominated by systematics which, at present, prevent a detailed composition analysis.


2006 ◽  
Vol 21 (supp01) ◽  
pp. 147-152
Author(s):  
J. BACELAR ◽  
O. SCHOLTEN ◽  
A. G. de BRUYN ◽  
H. FALCKE

Ultra-High-Energy (UHE) particles of cosmological origin (cosmic-rays and neutrinos), carry information on the most spectacular events known. These extremely energetic (energies larger than 1 ZeV= 1021 eV) cosmic-rays or neutrinos initiate in the lunar regolith a cascade of charged particles which acts as a radio pulse emitter. The instantaneous power produced can be detected here at the Earth, with a radio telescope operating at the optimal frequency window around 150 MHz. Using 12 telescopes of the Westerbork Synthesis Radio Telescope, WSRT, with a field of view covering the whole lunar surface, our calculations show that one should identify 10 UHE events within an observation time of 500 hours, assuming an extrapolated power law dependence of the highest ever measured cosmic-ray events, around an energy of 1020 eV. A null result will determine unambiguously the GKZ effect for the cosmic-ray flux and improve the present world upper limit on the neutrino flux above 1 ZeV, by three orders of magnitude, allowing for the first time to test the Waxman-Bahcall neutrino flux limit.


1971 ◽  
Vol 2 ◽  
pp. 740-756
Author(s):  
Maurice M. Shapiro

The ‘Galactic’ cosmic rays impinging on the Earth come from afar over tortuous paths, traveling for millions of years. These particles are the only known samples of matter that reach us from regions of space beyond the solar system. Their chemical and isotopic composition and their energy spectra provide clues to the nature of cosmic-ray sources, the properties of interstellar space, and the dynamics of the Galaxy. Various processes in high-energy astrophysics could be illuminated by a more complete understanding of the arriving cosmic rays, including the electrons and gamma rays.En route, some of theprimordialcosmic-ray nuclei have been transformed by collision with interstellar matter, and the composition is substantially modified by these collisions. A dramatic consequence of the transformations is the presence in the arriving ‘beam’ of considerable fluxes of purely secondary elements (Li, Be, B), i.e., species that are, in all probability, essentially absent at the sources. We shall here discuss mainly the composition of the arriving ‘heavy’ nuclei -those heavier than helium - and what they teach us about thesourcecomposition, the galactic confinement of the particles, their path lengths, and their transit times.


Sign in / Sign up

Export Citation Format

Share Document